## L D Ziegler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10615811/publications.pdf Version: 2024-02-01



L D ZIECLER

| 1 Conjugate Acidăć"Base Interaction Driven Phase Transition at a 2D Airãć"Water Interface. Journal of Physical Chemistry B, 2021, 125, 6330-6337. 2.6 5   2 Surface enhanced Raman scattering specificity for detection and identification of dried bloodstains. 2.2 20   3 Vibrational line shape effects in plasmon-enhanced stimulated Raman spectroscopies. Journal of Chemical Physics, 2021, 155, 194701. 3.0 2   4 Surface enhanced Raman scattering for robust, sensitive detection and confirmatory identification of dried bloodstains. Analyst, The, 2020, 145, 6097-6110. 3.5 21   5 Anomalous pH-Dependent Enhancement of <i>&gt; c/i&gt; coperative Surface Adsorption Effects. Journal of Physical Chemistry A, 2020, 124, 3064-3076. 2.8 8   6 Two-dimensional infrared spectroscopy from the gas to liquid phase: density dependent <i>&gt; coperative Surface Adsorption Effects. Journal of Physical Chemistry A, 2020, 124, 3064-3076. 2.8 8   7 diagnostics, and extra-cellular metabolomics and blochemical monitoring. Scientific Reports, 2018, 8, 3.3 31   8 Surface enhanced Raman spectroscopy of a Quasifree Rotor: cmml:math xmmsmil="http://www.w3.org/1998/MathMathMil" 7.8 13   9 Surface enhanced Raman spectroscopy of a Quasifree Rotor: cmml:math xmmsmil="http://www.w3.org/1998/MathMathMil" 7.8 13   9 signostics, and extra-cellular metabo</i></i>                                                                                                                                                                                                                                | TIONS |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2 Surface enhanced Raman scattering specificity for detection and identification of dried bloodstains. 2.2 20   3 Vibrational line shape effects in plasmon-enhanced stimulated Raman spectroscopies. Journal of Chemical Physics, 2021, 155, 194701. 3.0 2   4 Surface enhanced Raman scattering for robust, sensitive detection and confirmatory identification of dried bloodstains. Analyst, The, 2020, 145, 6097-6110. 3.5 21   5 Anomalous pH-Dependent Enhancement of <>> >> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3 Vibrational line shape effects in plasmon-enhanced stimulated Raman spectroscopies. Journal of 3.0 2   4 Surface enhanced Raman scattering for robust, sensitive detection and confirmatory identification of dried bloodstains. Analyst, The, 2020, 145, 6097-6110. 3.5 21   5 Anomalous pH-Dependent Enhancement of <i>&gt; p./i&gt;-Methyl Benzoic Acid Sum-Frequency Intensities: Cooperative Surface Adsorption Effects. Journal of Physical Chemistry A, 2020, 124, 3064-3076. 2.5 6   6 Two-dimensional infrared spectroscopy from the gas to liquid phase: density dependent <i>&gt;//n&gt;. (Densitry Chemical Physics, 2019, 21, 21249-21261. 2.8 8   7 diagnostics, and extra-cellular metabolomics and biochemical monitoring. Scientific Reports, 2018, 8, 3.3 31   8 Ultrafast Two-Dimensional Infrared Spectroscopy of a Quasifree Rotor: <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"> 7.8 13   9 Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Analytical and Bloanalytical Chemistry, 2017, 409, 3043-3054. 3.7 67   9 Structure Making and Breaking Effects of Cations in Aqueous Solution: Nitrous Oxide Pumpã€"Probe 2.6 8</mml:math></i></i>                                                                                                                                                                                                                                                                                                                                     |       |
| 4 Surface enhanced Raman scattering for robust, sensitive detection and confirmatory identification of dried bloodstains. Analyst, The, 2020, 145, 6097-6110. 3.5 21   5 Anomalous pH-Dependent Enhancement of <i>&gt; &gt; &gt; &gt; 2-5 6   6 Two-dimensional infrared spectroscopy from the gas to liquid phase: density dependent(&gt;)/(&gt; 2.6 8 8   7 Surface enhanced Raman spectroscopy of Chlamydia trachomatis and Neisseria gonorrhoeae for diagnostics, and extra-cellular metabolomics and biochemical monitoring. Scientific Reports, 2018, 8, 3.3 31   8 Witrafast Two-Dimensional Infrared Spectroscopy of a Quasifree Rotor: <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> 7.8 13   9 Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Analytical and Bioanalytical Chemistry, 2017, 409, 3.7 67   10 Structure Making and Breaking Effects of Cations in Aqueous Solution: Nitrous Oxide Pumpåe<sup>en</sup>Probe 2.6 8</mml:math></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 5Anomalous pH-Dependent Enhancement of <i>p</i> Cooperative Surface Adsorption Effects. Journal of Physical Chemistry A, 2020, 124, 3064-3076.2.566Two-dimensional infrared spectroscopy from the gas to liquid phase: density<br>dependent <i>&gt;2.886Surface enhanced Raman spectroscopy of Chlamydia trachomatis and Neisseria gonorrhoeae for<br/>diagnostics, and extra-cellular metabolomics and biochemical monitoring. Scientific Reports, 2018, 8,<br/>\$163.3.3318Ultrafast Two-Dimensional Infrared Spectroscopy of a Quasifree Rotor: <ml:math<br></ml:math<br>xmlns:mml="http://www.w3.org/1998/Math/Math/IL"<br/>display="inline"&gt;&lt;<ml>7.8139Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS):<br/>identification and antibiotic susceptibilities. Analytical and Bioanalytical Chemistry, 2017, 409,<br/>3043-3054.3.767</ml></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 6Two-dimensional infrared spectroscopy from the gas to liquid phase: density<br>dependent <i>&gt;2.886Surface enhanced Raman spectroscopy of Chlamydia trachomatis and Neisseria gonorrhoeae for<br/>diagnostics, and extra-cellular metabolomics and biochemical monitoring. Scientific Reports, 2018, 8,<br/>\$163.3.3317Ultrafast Two-Dimensional Infrared Spectroscopy of a Quasifree Rotor: <mml:math<br></mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;&lt;<mml:mine">&lt;<mml:mine">&lt;<mml:mine">&lt;<mml:math<br></mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;&lt;<mml:mine">&lt;<mml:mine">&lt;<mml:mine< td="">7.8139Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS):<br/>identification and antibiotic susceptibilities. Analytical and Bioanalytical Chemistry, 2017, 409,<br/>3043-3054.3.767</mml:mine<></mml:mine"></mml:mine"></mml:mine"></mml:mine"></mml:mine"></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 7Surface enhanced Raman spectroscopy of Chlamydia trachomatis and Neisseria gonorrhoeae for<br>diagnostics, and extra-cellular metabolomics and biochemical monitoring. Scientific Reports, 2018, 8,<br>5163.3.3318Ultrafast Two-Dimensional Infrared Spectroscopy of a Quasifree Rotor: <mml:math<br></mml:math<br> xmlns:mml="http://www.w3.org/1998/Math/MathML"<br>display="inline"> <mml:mi>!/www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>!/www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>!/www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>!/www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>!/www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>!/www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>!/www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>!/www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>!/www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>!/www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>!/www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;7.8139Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS):<br/>identification and antibiotic susceptibilities. Analytical and Bioanalytical Chemistry, 2017, 409,<br/>3043-3054.3.76710Structure Making and Breaking Effects of Cations in Aqueous Solution: Nitrous Oxide Pumpâ€"Probe<br/>Measurements, Journal of Physical Chemistry B, 2016, 120, 10569-105802.68</mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi> |       |
| 8 Ultrafast Two-Dimensional Infrared Spectroscopy of a Quasifree Rotor: <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mins:mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mins:mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mins: mml:math="" mml:mins<="">Scrambling and Perfectly Anticorrelated Cross Peaks. Physical Review Letters, 2018, 120, 103401. 7.8 13   9 Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Analytical and Bioanalytical Chemistry, 2017, 409, 3043-3054. 3.7 67   10 Structure Making and Breaking Effects of Cations in Aqueous Solution: Nitrous Oxide Pumpâ€"Probe Measurements Journal of Physical Chemistry B, 2016, 120, 10569,10580 2.6 8</mml:mins:></mml:mins:mml="http:></mml:mins:mml="http:></mml:mins:mml="http:></mml:mins:mml="http:></mml:mins:mml="http:></mml:math>                                                                                                                                                                                                                                                                                                                                                                           |       |
| 9 Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS):<br>identification and antibiotic susceptibilities. Analytical and Bioanalytical Chemistry, 2017, 409,<br>3043-3054. 3.7 67   10 Structure Making and Breaking Effects of Cations in Aqueous Solution: Nitrous Oxide Pump–Probe<br>Measurements Journal of Physical Chemistry B, 2016, 120, 10569,10580 2.6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Structure Making and Breaking Effects of Cations in Aqueous Solution: Nitrous Oxide Pump–Probe 2.6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 11Origin of Dispersive Line Shapes in Plasmonically Enhanced Femtosecond Stimulated Raman Spectra.3.11411Journal of Physical Chemistry C, 2016, 120, 20998-21006.3.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 12NIR Raman spectra of whole human blood: effects of laser-induced and in vitro hemoglobin<br>denaturation. Analytical and Bioanalytical Chemistry, 2014, 406, 193-200.3.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Dispersed Three-Pulse Infrared Photon Echoes of Nitrous Oxide in Water and Octanol. Journal of<br>Physical Chemistry B, 2013, 117, 15774-15785.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 14Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells:<br>Cellular Processes and Bioanalytical Sensing. Journal of Physical Chemistry B, 2012, 116, 9376-9386.2.6188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Rapid bacterial diagnostics via surface enhanced Raman microscopy. Spectroscopy (Santa Monica), 1.0 5<br>2012, 27, s8-31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Electron Correlation Effects on the Femtosecond Dephasing Dynamics<br>of <i>&gt;E</i> <sub>22</sub> Excitons in (6,5) Carbon Nanotubes. Journal of Physical Chemistry A, 2011, 115, 2.5 15<br>3917-3923.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 17 On the Molecular Origin of Bacterial SERS Spectra. , 2010, , . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |

18 Surface-Enhanced Raman Scattering of Microorganisms. , 2010, , .

L D ZIEGLER

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nanoaggregate Embedded Beads as SERS Nanosensor for Multiplexed Pathogen Detection. , 2010, , .                                                                                                                 |     | 0         |
| 20 | Ultrafast H[sub 2] and D[sub 2] rotational Raman responses in near critical CO[sub 2]: An experimental and theoretical study of anisotropic solvation dynamics. Journal of Chemical Physics, 2009, 131, 054501. | 3.0 | 7         |
| 21 | Barcoding bacterial cells: a SERSâ€based methodology for pathogen identification. Journal of Raman<br>Spectroscopy, 2008, 39, 1660-1672.                                                                        | 2.5 | 179       |
| 22 | Surface-Enhanced Raman Scattering of Microorganisms. ACS Symposium Series, 2007, , 164-185.                                                                                                                     | 0.5 | 16        |
| 23 | Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria. Journal of Physical<br>Chemistry B, 2005, 109, 312-320.                                                                           | 2.6 | 475       |
| 24 | Ultrafast Two-Photon Absorption Approach to Optical Line Shape Measurementsâ€. Journal of Physical<br>Chemistry A, 2003, 107, 8282-8294.                                                                        | 2.5 | 0         |
| 25 | A Novel Technique for the Measurement of Polarization-Specific Ultrafast Raman Responses. Journal of Physical Chemistry A, 2001, 105, 9851-9858.                                                                | 2.5 | 13        |
| 26 | A unified treatment of ultrafast optical heterodyne detected and Z-scan spectroscopies. Journal of<br>Chemical Physics, 2001, 114, 3586-3597.                                                                   | 3.0 | 16        |
| 27 | The femtosecond birefringence of CO2: from the high pressure gas to the liquid phase. Journal of Raman Spectroscopy, 2000, 31, 85-94.                                                                           | 2.5 | 8         |
| 28 | A combined instantaneous normal mode and time correlation function description of the optical Kerr<br>effect and Raman spectroscopy of liquid CS2. Journal of Chemical Physics, 2000, 112, 4186-4192.           | 3.0 | 38        |
| 29 | Optical heterodyne detected spectrograms of ultrafast nonresonant electronic responses. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 652.                                            | 2.1 | 13        |
| 30 | The probe frequency dependence of nonresonant femtosecond pump–probe nuclear responses:<br>Undercutting vibrational inhomogeneities. Journal of Chemical Physics, 1999, 110, 5893-5905.                         | 3.0 | 22        |
| 31 | Controlling nonpolar solvation time scales: An instantaneous normal mode viewpoint. Journal of<br>Chemical Physics, 1997, 107, 9878-9889.                                                                       | 3.0 | 4         |
| 32 | Dispersed Optical Heterodyne Detected Birefringence and Dichroism of Transparent Liquids. Journal of Physical Chemistry A, 1997, 101, 5456-5462.                                                                | 2.5 | 40        |
| 33 | A molecular dynamics analysis of resonance emission: Optical dephasing and inhomogeneous<br>broadening of CH3I in CH4and Ar. Journal of Chemical Physics, 1996, 104, 3886-3897.                                 | 3.0 | 18        |
| 34 | An instantaneous normal mode analysis of solvation: Methyl iodide in high pressure gases. Journal of<br>Chemical Physics, 1996, 105, 7034-7046.                                                                 | 3.0 | 39        |
| 35 | The resonance fluorescence polarization of free rotors: Methyl iodide in methane and carbon dioxide.<br>Journal of Chemical Physics, 1996, 105, 3984-3993.                                                      | 3.0 | 4         |
| 36 | A molecular dynamics study of electronic absorption line broadening in highâ€pressure nonpolar gases.<br>Journal of Chemical Physics, 1995, 103, 7673-7684.                                                     | 3.0 | 25        |

L D ZIEGLER

| #  | Article                                                                                                                                                             | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A resonance Raman polarization study of the mode-specific subpicosecond photodissociation of the NO2 22B2 state. Journal of Raman Spectroscopy, 1994, 25, 497-506.  | 2.5 | 10        |
| 38 | Femtosecond polarization spectroscopy: A density matrix description. Journal of Chemical Physics, 1994, 100, 1823-1839.                                             | 3.0 | 69        |
| 39 | Resonance hyperâ€Raman scattering polarization. A measure of methyl iodide Bâ€state subpicosecond<br>lifetimes. Journal of Chemical Physics, 1993, 98, 150-157.     | 3.0 | 14        |
| 40 | Polarization analysis of the 266-nm excited resonance Raman spectrum of methyl iodide. The Journal of Physical Chemistry, 1993, 97, 3139-3145.                      | 2.9 | 32        |
| 41 | Spectroscopic Applications of Phase-Locked Femtosecond Pulses. Springer Series in Chemical Physics, 1993, , 99-104.                                                 | 0.2 | 1         |
| 42 | Transient Dichroism Studies of I2 Predissociation in Solution. Springer Series in Chemical Physics, 1993, , 49-52.                                                  | 0.2 | 0         |
| 43 | Nonlinear polarization description of phase″ocked pulseâ€pair spectroscopy. Journal of Chemical<br>Physics, 1992, 97, 4704-4713.                                    | 3.0 | 15        |
| 44 | Fluorescenceâ€detected wave packet interferometry. II. Role of rotations and determination of the susceptibility. Journal of Chemical Physics, 1992, 96, 4180-4194. | 3.0 | 131       |
| 45 | Heterodyneâ€detected timeâ€domain measurement of I2 predissociation and vibrational dynamics in solution. Journal of Chemical Physics, 1992, 96, 5544-5547.         | 3.0 | 118       |
| 46 | Isotopic Dependence of the Methyl-Radical Rydberg 3 s Predissociation Dynamics. ACS Symposium Series, 1992, , 297-309.                                              | 0.5 | 1         |
| 47 | Predissociation Dynamics and Structure of the Higher Vibronic Levels in the Methyl Radical Rydberg 3s<br>State. Springer Proceedings in Physics, 1992, , 218-219.   | 0.2 | 0         |
| 48 | Subpicosecond predissociation dynamics of the methyl radical Rydberg 3 s state. Journal of Chemical Physics, 1991, 94, 270-276.                                     | 3.0 | 37        |
| 49 | Modeâ€specific subpicosecond photodissociation dynamics of the methyl iodideBstate. Journal of<br>Chemical Physics, 1991, 95, 288-296.                              | 3.0 | 38        |
| 50 | The resonance rotational Raman effect: a probe of excited-state short-time dynamics. The Journal of<br>Physical Chemistry, 1990, 94, 3394-3403.                     | 2.9 | 28        |
| 51 | Hyper-Raman spectroscopy. Journal of Raman Spectroscopy, 1990, 21, 769-779.                                                                                         | 2.5 | 117       |
| 52 | The spontaneous resonance Raman scattering of CH3I in a supersonic jet. Journal of Chemical Physics,<br>1990, 92, 2806-2817.                                        | 3.0 | 47        |
| 53 | An experimental study of radiationâ€induced pure dephasing: ArF excited emission of O2. Journal of Chemical Physics, 1990, 93, 8605-8615                            | 3.0 | 6         |
| 54 | Schumann-Runge resonance Raman scattering of oxygen: a rotationally resolved excitation profile study. The Journal of Physical Chemistry, 1989, 93, 6665-6671.      | 2.9 | 16        |

L D ZIEGLER

| #  | Article                                                                                                                                                                                                          | IF                    | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| 55 | Depolarization ratios of resonance Raman scattering in the gas phase. Journal of Chemical Physics, 1989, 90, 4125-4143.                                                                                          | 3.0                   | 47        |
| 56 | Rovibrational Raman scattering of CH3I vapor: Resonance with a perpendicularly polarized electronic transition. Journal of Chemical Physics, 1989, 90, 4115-4124.                                                | 3.0                   | 20        |
| 57 | The vibronic theory of resonance hyperâ€Raman scattering. Journal of Chemical Physics, 1988, 88,<br>7287-7294.                                                                                                   | 3.0                   | 85        |
| 58 | Rotational hyperâ€Raman excitation profiles: Further evidence of Jâ€dependent subpicosecond dynamics of<br>NH3. Journal of Chemical Physics, 1988, 89, 4692-4699.                                                | 3.0                   | 33        |
| 59 | Resonance rotational hyperâ€Raman scattering intensities of symmetric top molecules. Journal of<br>Chemical Physics, 1987, 87, 4498-4509.                                                                        | 3.0                   | 40        |
| 60 | Rotational Raman excitation profiles of symmetric tops: Subpicosecond rotation dependent lifetimes in the $Alf$ state of ammonia. Journal of Chemical Physics, 1987, 86, 1703-1714.                              | 3.0                   | 52        |
| 61 | Resonance rotational Raman scattering of symmetric tops: A probe of molecular photodissociation.<br>Journal of Chemical Physics, 1986, 84, 6013-6026.                                                            | 3.0                   | 56        |
| 62 | Rovibronic absorption analysis of the Ã â†â€‰X̃ transition of ammonia. Journal of Chemical Physics, 198<br>664-669.                                                                                              | 5, <u>82</u> ,<br>3.0 | 95        |
| 63 | Resonance rovibronic Raman scattering of ammonia. The Journal of Physical Chemistry, 1984, 88,<br>1110-1116.                                                                                                     | 2.9                   | 63        |
| 64 | Resonance rovibrational Raman scattering as a probe of unimolecular subpicosecond dynamics.<br>Journal of Chemical Physics, 1984, 81, 6399-6400.                                                                 | 3.0                   | 20        |
| 65 | Resonance Raman spectra of mononucleotides obtained with 266 and 213 nm ultraviolet radiation.<br>Biopolymers, 1984, 23, 2067-2081.                                                                              | 2.4                   | 56        |
| 66 | Resonance Raman scattering of ethylene: Evidence for a twisted geometry in the V state. Journal of<br>Chemical Physics, 1983, 79, 1197-1202.                                                                     | 3.0                   | 62        |
| 67 | Vibronic coupling activity in the resonance Raman spectra of alkyl benzenes. Journal of Chemical<br>Physics, 1983, 79, 1134-1137.                                                                                | 3.0                   | 51        |
| 68 | Resonance Raman scattering of benzene and benzeneâ€d6 with 212.8 nm excitation. Journal of Chemical Physics, 1981, 74, 982-992.                                                                                  | 3.0                   | 107       |
| 69 | Ultraviolet preresonance Raman scattering of benzene derivatives. II. Interference effects in the excitation profiles of the vibronically active fundamentals. Journal of Chemical Physics, 1979, 70, 2644-2651. | 3.0                   | 21        |
| 70 | Preresonance Raman scattering of overtones: The scattering of two overtones of benzene in the ultraviolet. Journal of Raman Spectroscopy, 1979, 8, 73-80.                                                        | 2.5                   | 18        |
| 71 | Ultraviolet preresonance Raman scattering of benzene derivatives. I. Excitation profiles for fundamentals. Journal of Chemical Physics, 1979, 70, 2634-2643.                                                     | 3.0                   | 28        |
| 72 | Calculations of resonance Raman cross sections in forbidden electronic transitions: Scattering of<br>the 992 cmâ^'1 mode in the 1B2u band of benzene. Journal of Chemical Physics, 1978, 68, 1248-1252.          | 3.0                   | 44        |