List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/106157/publications.pdf Version: 2024-02-01

SHUVAN CAO

#	Article	IF	CITATIONS
1	Interfacing Manganese Oxide and Cobalt in Porous Graphitic Carbon Polyhedrons Boosts Oxygen Electrocatalysis for Zn–Air Batteries. Advanced Materials, 2019, 31, e1902339.	21.0	363
2	A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy, 2017, 33, 334-342.	16.0	352
3	One-Pot Synthesis of Ag/ZnO Self-Assembled 3D Hollow Microspheres with Enhanced Photocatalytic Performance. Journal of Physical Chemistry C, 2008, 112, 16792-16800.	3.1	331
4	Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy, 2018, 52, 264-270.	16.0	331
5	A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy and Environmental Science, 2019, 12, 648-655.	30.8	318
6	Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy and Environmental Science, 2015, 8, 221-229.	30.8	307
7	Designed Formation of Doubleâ€Shelled Ni–Fe Layeredâ€Doubleâ€Hydroxide Nanocages for Efficient Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1906432.	21.0	305
8	Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. Journal of Materials Chemistry A, 2020, 8, 19729-19745.	10.3	295
9	Identifying the Origin of Ti ³⁺ Activity toward Enhanced Electrocatalytic N ₂ Reduction over TiO ₂ Nanoparticles Modulated by Mixedâ€Valent Copper. Advanced Materials, 2020, 32, e2000299.	21.0	278
10	Nickel–Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2018, 57, 10944-10948.	13.8	269
11	Rationally Designed Threeâ€Layered Cu ₂ S@Carbon@MoS ₂ Hierarchical Nanoboxes for Efficient Sodium Storage. Angewandte Chemie - International Edition, 2020, 59, 7178-7183.	13.8	232
12	Aqueous electrocatalytic N ₂ reduction for ambient NH ₃ synthesis: recent advances in catalyst development and performance improvement. Journal of Materials Chemistry A, 2020, 8, 1545-1556.	10.3	226
13	Functional Groups and Pore Size Distribution Do Matter to Hierarchically Porous Carbons as High-Rate-Performance Supercapacitors. Chemistry of Materials, 2016, 28, 445-458.	6.7	221
14	Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. Journal of Materials Chemistry A, 2014, 2, 3317.	10.3	208
15	Nitrogenâ€Doped Cobalt Pyrite Yolk–Shell Hollow Spheres for Longâ€Life Rechargeable Zn–Air Batteries. Advanced Science, 2020, 7, 2001178.	11.2	206
16	N-doped-carbon-coated Fe3O4 from metal-organic framework as efficient electrocatalyst for ORR. Nano Energy, 2017, 40, 462-470.	16.0	198
17	Phosphorized CoNi ₂ S ₄ Yolkâ€Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angewandte Chemie - International Edition, 2021, 60, 22885-22891.	13.8	191
18	Synthesis of Cobalt Sulfide Multiâ€shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 2675-2679.	13.8	182

#	Article	IF	CITATIONS
19	Synthesis of Copper‧ubstituted CoS ₂ @Cu _{<i>x</i>} S Double‧helled Nanoboxes by Sequential Ion Exchange for Efficient Sodium Storage. Angewandte Chemie - International Edition, 2020, 59, 2644-2648.	13.8	182
20	Green Fabrication of Hierarchical CuO Hollow Micro/Nanostructures and Enhanced Performance as Electrode Materials for Lithium-ion Batteries. Journal of Physical Chemistry C, 2008, 112, 19324-19328.	3.1	181
21	Highâ€Performance Electrochemical NO Reduction into NH ₃ by MoS ₂ Nanosheet. Angewandte Chemie - International Edition, 2021, 60, 25263-25268.	13.8	180
22	Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors. Nano Energy, 2016, 28, 206-215.	16.0	174
23	Ambient Ammonia Synthesis via Electrochemical Reduction of Nitrate Enabled by NiCo ₂ O ₄ Nanowire Array. Small, 2022, 18, e2106961.	10.0	171
24	High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. Journal of Materials Chemistry B, 2020, 8, 5411-5415.	5.8	170
25	Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology, 2008, 19, 445711.	2.6	168
26	Honeysuckles-derived porous nitrogen, sulfur, dual-doped carbon as high-performance metal-free oxygen electroreduction catalyst. Nano Energy, 2015, 12, 785-793.	16.0	167
27	Recent advances in electrospun nanofibers for supercapacitors. Journal of Materials Chemistry A, 2020, 8, 16747-16789.	10.3	166
28	Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting. Small Structures, 2021, 2, 2000048.	12.0	157
29	A-site perovskite oxides: an emerging functional material for electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2021, 9, 6650-6670.	10.3	146
30	ZnO-Based Hollow Microspheres:Â Biopolymer-Assisted Assemblies from ZnO Nanorods. Journal of Physical Chemistry B, 2006, 110, 15847-15852.	2.6	137
31	A green one-arrow-two-hawks strategy for nitrogen-doped carbon dots as fluorescent ink and oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2014, 2, 6320.	10.3	136
32	Nitrogen-doped carbon shell structure derived from natural leaves as a potential catalyst for oxygen reduction reaction. Nano Energy, 2015, 13, 518-526.	16.0	132
33	Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes. Journal of Materials Chemistry A, 2017, 5, 181-188.	10.3	130
34	Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 34, 483-507.	18.0	130
35	Ordered Co3O4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity. Journal of Materials Chemistry, 2009, 19, 8366.	6.7	129
36	Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Materials Today, 2019, 28, 17-24.	14.2	127

#	Article	IF	CITATIONS
37	A cobalt–phosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. Sustainable Energy and Fuels, 2020, 4, 3884-3887.	4.9	127
38	Metal-based electrocatalytic conversion of CO ₂ to formic acid/formate. Journal of Materials Chemistry A, 2020, 8, 21947-21960.	10.3	125
39	Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy, 2022, 97, 107124.	16.0	125
40	Rational Design and Engineering of Oneâ€Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 20102-20118.	13.8	123
41	Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon as an efficient catalyst for oxygen reduction reaction. Nano Energy, 2015, 16, 408-418.	16.0	119
42	Hierarchically porous carbon materials with controllable proportion of micropore area by dual-activator synthesis for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15340-15347.	10.3	116
43	An ultrasmall Ru ₂ P nanoparticles–reduced graphene oxide hybrid: an efficient electrocatalyst for NH ₃ synthesis under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 77-81.	10.3	115
44	Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2020, 8, 11493-11510.	10.3	113
45	CoFe-LDH nanowire arrays on graphite felt: A high-performance oxygen evolution electrocatalyst in alkaline media. Chinese Chemical Letters, 2022, 33, 890-892.	9.0	110
46	Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method. Applied Physics Letters, 2006, 89, 123125.	3.3	108
47	In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Research, 2022, 15, 3050-3055.	10.4	108
48	Ambient electrohydrogenation of N ₂ for NH ₃ synthesis on non-metal boron phosphide nanoparticles: the critical role of P in boosting the catalytic activity. Journal of Materials Chemistry A, 2019, 7, 16117-16121.	10.3	105
49	Highâ€Performance Electrochemical NO Reduction into NH ₃ by MoS ₂ Nanosheet. Angewandte Chemie, 2021, 133, 25467-25472.	2.0	102
50	Loading Singleâ€Ni Atoms on Assembled Hollow Nâ€Rich Carbon Plates for Efficient CO ₂ Electroreduction. Advanced Materials, 2022, 34, e2105204.	21.0	100
51	Why and how to tailor the vertical coordinate of pore size distribution to construct ORR-active carbon materials?. Nano Energy, 2019, 58, 384-391.	16.0	97
52	Hierarchical Ag/ZnO micro/nanostructure: Green synthesis and enhanced photocatalytic performance. Journal of Solid State Chemistry, 2011, 184, 764-769.	2.9	94
53	Recent Progress in Electrocatalytic Methanation of CO ₂ at Ambient Conditions. Advanced Functional Materials, 2021, 31, 2009449.	14.9	92
54	Triboelectric Nanogenerator Powered Electrochemical Degradation of Organic Pollutant Using Pt-Free Carbon Materials. ACS Nano, 2017, 11, 3965-3972.	14.6	91

#	Article	IF	CITATIONS
55	A universal strategy for carbon–based ORR–active electrocatalyst: One porogen, two pore–creating mechanisms, three pore types. Nano Energy, 2019, 62, 628-637.	16.0	91
56	Ti ₂ O ₃ Nanoparticles with Ti ³⁺ Sites toward Efficient NH ₃ Electrosynthesis under Ambient Conditions. ACS Applied Materials & Interfaces, 2021, 13, 41715-41722.	8.0	89
57	PdP ₂ nanoparticles–reduced graphene oxide for electrocatalytic N ₂ conversion to NH ₃ under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 24760-24764.	10.3	81
58	Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity. Journal of Materials Chemistry A, 2014, 2, 18263-18270.	10.3	78
59	An advanced electro-Fenton degradation system with triboelectric nanogenerator as electric supply and biomass-derived carbon materials as cathode catalyst. Nano Energy, 2018, 45, 21-27.	16.0	77
60	Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading. ACS Applied Materials & Interfaces, 2018, 10, 41380-41388.	8.0	76
61	Nitrogen-Doped Porous Carbon Derived from Malachium Aquaticum Biomass as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Electrochimica Acta, 2016, 220, 427-435.	5.2	73
62	CoS2–graphene composite as efficient catalytic counter electrode for dye-sensitized solar cell. Electrochimica Acta, 2013, 114, 173-179.	5.2	71
63	An innovative electro-fenton degradation system self-powered by triboelectric nanogenerator using biomass-derived carbon materials as cathode catalyst. Nano Energy, 2017, 42, 314-321.	16.0	71
64	Greatly Enhanced Electrocatalytic N ₂ Reduction over V ₂ O ₃ /C by P Doping. ChemNanoMat, 2020, 6, 1315-1319.	2.8	71
65	High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni ₂ P nanoarray under ambient conditions. Journal of Materials Chemistry A, 2021, 9, 24268-24275.	10.3	68
66	Highly Stable Au Nanoparticles with Tunable Spacing and Their Potential Application in Surface Plasmon Resonance Biosensors. Advanced Functional Materials, 2010, 20, 78-86.	14.9	67
67	Hierarchically micro/nanostructured porous metallic copper: Convenient growth and superhydrophilic and catalytic performance. Journal of Materials Chemistry, 2012, 22, 21733.	6.7	64
68	Pyrrolic-nitrogen-rich biomass-derived catalyst for sustainable degradation of organic pollutant via a self-powered electro-Fenton process. Nano Energy, 2019, 64, 103940.	16.0	62
69	Ni2P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions. Journal of Colloid and Interface Science, 2022, 606, 1055-1063.	9.4	62
70	Peanut-Shell-like Porous Carbon from Nitrogen-Containing Poly- <i>N</i> -phenylethanolamine for High-Performance Supercapacitor. ACS Applied Materials & Interfaces, 2015, 7, 22238-22245.	8.0	61
71	High-Performance Electrochemical Nitrate Reduction to Ammonia under Ambient Conditions Using a FeOOH Nanorod Catalyst. ACS Applied Materials & Interfaces, 2022, 14, 17312-17318.	8.0	58
72	Functional integration of hierarchical core–shell architectures <i>via</i> vertically arrayed ultrathin CuSe nanosheets decorated on hollow CuS microcages targeting highly effective sodium-ion storage. Journal of Materials Chemistry A, 2021, 9, 27615-27628.	10.3	56

#	Article	IF	CITATIONS
73	Electrochemical two-electron O ₂ reduction reaction toward H ₂ O ₂ production: using cobalt porphyrin decorated carbon nanotubes as a nanohybrid catalyst. Journal of Materials Chemistry A, 2021, 9, 26019-26027.	10.3	55
74	One stone, two birds: Gastrodia elata-derived heteroatom-doped carbon materials for efficient oxygen reduction electrocatalyst and as fluorescent decorative materials. Nano Energy, 2013, 2, 1261-1270.	16.0	54
75	Engineering flexible 3D printed triboelectric nanogenerator to self-power electro-Fenton degradation of pollutants. Nano Energy, 2020, 74, 104908.	16.0	54
76	Sn dendrites for electrocatalytic N ₂ reduction to NH ₃ under ambient conditions. Sustainable Energy and Fuels, 2020, 4, 4469-4472.	4.9	54
77	MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Materials Today Physics, 2022, 22, 100586.	6.0	54
78	Self-Powered Electrochemical Oxidation of 4-Aminoazobenzene Driven by a Triboelectric Nanogenerator. ACS Nano, 2017, 11, 770-778.	14.6	53
79	Enabling electrochemical conversion of N ₂ to NH ₃ under ambient conditions by a CoP ₃ nanoneedle array. Journal of Materials Chemistry A, 2020, 8, 17956-17959.	10.3	53
80	Application of hierarchical TiO2 spheres as scattering layer for enhanced photovoltaic performance in dye sensitized solar cell. CrystEngComm, 2013, 15, 3351.	2.6	52
81	Sustainable self-powered electro-Fenton degradation of organic pollutants in wastewater using carbon catalyst with controllable pore activated by EDTA-2Na. Nano Energy, 2019, 59, 346-353.	16.0	51
82	FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Research, 2020, 13, 209-214.	10.4	48
83	Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor. Renewable Energy, 2021, 179, 1826-1835.	8.9	48
84	Pore-structure regulation of biomass-derived carbon materials for an enhanced supercapacitor performance. Nanoscale, 2021, 13, 10051-10060.	5.6	47
85	Biomass Juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction. Journal of Materials Chemistry A, 2022, 10, 2842-2848.	10.3	47
86	Greatly Facilitated Two-Electron Electroreduction of Oxygen into Hydrogen Peroxide over TiO ₂ by Mn Doping. ACS Applied Materials & Interfaces, 2021, 13, 46659-46664.	8.0	46
87	A gradient hexagonal-prism Fe ₃ Se ₄ @SiO ₂ @C configuration as a highly reversible sodium conversion anode. Journal of Materials Chemistry A, 2022, 10, 4087-4099.	10.3	46
88	Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Research, 2020, 13, 2967-2972.	10.4	45
89	Chemical crosslinking engineered nitrogen-doped carbon aerogels from polyaniline-boric acid-polyvinyl alcohol gels for high-performance electrochemical capacitors. Carbon, 2017, 123, 471-480.	10.3	43
90	Sustainable self-powered electro-Fenton degradation using N, S co-doped porous carbon catalyst fabricated with adsorption-pyrolysis-doping strategy. Nano Energy, 2021, 81, 105623.	16.0	43

#	Article	IF	CITATIONS
91	Rationally Designed Threeâ€Layered Cu ₂ S@Carbon@MoS ₂ Hierarchical Nanoboxes for Efficient Sodium Storage. Angewandte Chemie, 2020, 132, 7245-7250.	2.0	42
92	Self-catalyzed growth of Zn/Co-N-C carbon nanotubes derived from metal-organic frameworks as efficient oxygen reduction catalysts for Zn-air battery. Science China Materials, 2022, 65, 653-662.	6.3	42
93	Biomolecule-assisted in situ route toward 3D superhydrophilic Ag/CuO micro/nanostructures with excellent artificial sunlight self-cleaning performance. Journal of Materials Chemistry, 2011, 21, 7281.	6.7	39
94	Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin. Materials Science and Engineering C, 2019, 103, 109856.	7.3	39
95	Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage. Journal of Materials Chemistry A, 2020, 8, 8049-8057.	10.3	38
96	A MnS/FeS ₂ heterostructure with a high degree of lattice matching anchored into carbon skeleton for ultra-stable sodium-ion storage. Journal of Materials Chemistry A, 2021, 9, 24024-24035.	10.3	38
97	Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Research, 2022, 15, 3880-3885.	10.4	38
98	Self-assembly of cuprous oxide nanoparticles supported on reduced graphene oxide and their enhanced performance for catalytic reduction of nitrophenols. RSC Advances, 2015, 5, 71259-71267.	3.6	36
99	Anatase TiO ₂ nanocrystals enclosed by well-defined crystal facets and their application in dye-sensitized solar cell. CrystEngComm, 2013, 15, 516-523.	2.6	35
100	Oxidation of diclofenac by potassium ferrate (VI): Reaction kinetics and toxicity evaluation. Science of the Total Environment, 2015, 506-507, 252-258.	8.0	35
101	Nickel–Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium–Sulfur Batteries. Angewandte Chemie, 2018, 130, 11110-11114.	2.0	35
102	Effects of gold nanoparticle morphologies on interactions with proteins. Materials Science and Engineering C, 2020, 111, 110830.	7.3	35
103	Hierarchical plasmonic-metal/semiconductor micro/nanostructures: green synthesis and application in catalytic reduction of p-nitrophenol. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	31
104	Selfâ€Powered Electrochemistry for the Oxidation of Organic Molecules by a Cross‣inked Triboelectric Nanogenerator. Advanced Materials, 2016, 28, 5188-5194.	21.0	31
105	A treasure map for nonmetallic catalysts: optimal nitrogen and fluorine distribution of biomass-derived carbon materials for high-performance oxygen reduction catalysts. Journal of Materials Chemistry A, 2021, 9, 18251-18259.	10.3	31
106	Unique gold sponges: biopolymer-assisted hydrothermal synthesis and potential application as surface-enhanced Raman scattering substrates. Nanotechnology, 2005, 16, 2530-2535.	2.6	29
107	Preparation of porous carbon electrodes from semen cassiae for high-performance electric double-layer capacitors. New Journal of Chemistry, 2018, 42, 6763-6769.	2.8	29
108	Synthesis of Cobalt Sulfide Multiâ€shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodiumâ€ion Batteries. Angewandte Chemie, 2019, 131, 2701-2705.	2.0	29

#	Article	IF	CITATIONS
109	Synthesis of Copper‣ubstituted CoS ₂ @Cu _{<i>x</i>} S Double‣helled Nanoboxes by Sequential Ion Exchange for Efficient Sodium Storage. Angewandte Chemie, 2020, 132, 2666-2670.	2.0	29
110	CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: an efficient catalyst for H ₂ O ₂ electrosynthesis in acidic media. Journal of Materials Chemistry A, 2021, 9, 21703-21707.	10.3	29
111	Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	28
112	Nitrogenâ€Doped Carbon with Mesopore Confinement Efficiently Enhances the Tolerance, Sensitivity, and Stability of a Pt Catalyst for the Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 2013, 30, 864-872.	2.3	27
113	Electrochemical oxidation degradation of azobenzene dye self-powered by multilayer-linkage triboelectric nanogenerator. Nano Energy, 2016, 30, 52-58.	16.0	27
114	Self-sacrificial template synthesis of Fe, N co-doped porous carbon as efficient oxygen reduction electrocatalysts towards Zn-air battery application. Chinese Chemical Letters, 2022, 33, 2171-2177.	9.0	26
115	Template-assisted self-activation of mesoporous carbon with active nitrogen/oxygen configurations for sustainable triboelectric nanogenerator powered electro-Fenton degradation. Nano Energy, 2021, 83, 105825.	16.0	25
116	Bioinspired synthesis of well faceted Cul nanostructures and evaluation of their catalytic performance for coupling reactions. Green Chemistry, 2010, 12, 1442.	9.0	24
117	Cauliflower-like Cul nanostructures: Green synthesis and applications as catalyst and adsorbent. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1021-1027.	3.5	24
118	Innovative Platform for Transmission Localized Surface Plasmon Transducers and Its Application in Detecting Heavy Metal Pd(II). Analytical Chemistry, 2009, 81, 7703-7712.	6.5	23
119	Template-assisted polymerization-pyrolysis derived mesoporous carbon anchored with Fe/Fe3C and Feâ [^] NX species as efficient oxygen reduction catalysts for Zn-air battery. International Journal of Hydrogen Energy, 2021, 46, 37895-37906.	7.1	23
120	Effects of precursor treatment on the structure and electrochemical properties of spinel LiMn2O4 cathode. Journal of Alloys and Compounds, 2013, 566, 16-21.	5.5	20
121	Transferrable Superhydrophobic Surface Constructed by a Hexagonal Cul Powder without Modification by Low-Free-Energy Materials. ACS Applied Materials & Interfaces, 2009, 1, 2080-2085.	8.0	19
122	Self-powered electro-Fenton degradation system using oxygen-containing functional groups-rich biomass-derived carbon catalyst driven by 3D printed flexible triboelectric nanogenerator. Nano Energy, 2021, 83, 105720.	16.0	19
123	Nitrogen, phosphorus, sulfur tri-doped porous carbon derived from covalent polymer with versatile performances in supercapacitor, oxygen reduction reaction and electro-fenton degradation. Microporous and Mesoporous Materials, 2021, 325, 111335.	4.4	18
124	Favorable pore size distribution of biomass-derived N, S dual-doped carbon materials for advanced oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 12964-12974.	7.1	18
125	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.	5.4	17
126	Cotton-assisted dual rotor-stator triboelectric nanogenerator for real-time monitoring of crop growth environment. Nano Energy, 2022, 101, 107578.	16.0	17

#	Article	IF	CITATIONS
127	3D printed triboelectric nanogenerator self-powered electro-Fenton degradation of orange IV and crystal violet system using N-doped biomass carbon catalyst with tunable catalytic activity. Nano Energy, 2021, 83, 105824.	16.0	15
128	Bioinspired synthesis of hierarchically micro/nano-structured CuI tetrahedron and its potential application as adsorbent for Cd(II) with high removal capacity. Journal of Hazardous Materials, 2012, 211-212, 55-61.	12.4	14
129	Phosphorized CoNi ₂ S ₄ Yolkâ€Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angewandte Chemie, 2021, 133, 23067-23073.	2.0	14
130	Oxidationâ€etching induced morphology regulation of Cu catalysts for highâ€performance electrochemical <scp>N₂</scp> reduction. EcoMat, 2020, 2, e12026.	11.9	13
131	Rational Design and Engineering of Oneâ€Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 20262-20278.	2.0	13
132	Novel 3D Printed Vortex-like Flexible Roller-Compacted Triboelectric Nanogenerator for Self-Powered Electrochemical Degradation of Organic Contaminants. ACS Applied Materials & Interfaces, 2022, 14, 17426-17433.	8.0	13
133	Bioinspired Green Synthesis of Nanomaterials and their Applications. Current Nanoscience, 2010, 6, 452-468.	1.2	12
134	Recent developments and applications of hybrid surface plasmon resonance interfaces in optical sensing. Analytical and Bioanalytical Chemistry, 2011, 399, 91-101.	3.7	12
135	Room-temperature strategy for networked nonspherical gold nanostructures from Au(III)[G-2]CO2H dendrimer complex. Journal of Colloid and Interface Science, 2006, 293, 409-413.	9.4	11
136	Threeâ€Dimensional SnS ₂ Nanoarrays with Enhanced Lithiumâ€ion Storage Properties. ChemElectroChem, 2020, 7, 4484-4491.	3.4	8
137	N, P-dual doped carbonaceous catalysts derived from bifunctional-salt activation for effective electro-Fenton degradation on waterborne organic pollutions. Electrochimica Acta, 2021, 389, 138732.	5.2	8
138	Fabricating N, S Coâ€Doped Hierarchical Macroâ€Mesoâ€Micro Carbon Materials as pHâ€Universal ORR Electrocatalysts**. ChemistrySelect, 2022, 7, .	1.5	8
139	Biopolymer-Assisted Synthesis of Single Crystalline Gold Disks by a Hydrothermal Route. Current Nanoscience, 2008, 4, 145-150.	1.2	7
140	Carboxyl-cored dendrimer and toluene-assisted fabrication of uniform platinum nanodendrites at a water/oil interface and their potential application as a catalyst. Nanotechnology, 2006, 17, 1599-1606.	2.6	5
141	Electrocatalytic H ₂ O ₂ production <i>via</i> two-electron O ₂ reduction by Mo-doped TiO ₂ nanocrystallines. Catalysis Science and Technology, 2021, 11, 6970-6974.	4.1	4
142	Studies on the second virial coefficient of sodium alginate solution. Polymers for Advanced Technologies, 1997, 8, 722-726.	3.2	3
143	Antibiotic-inspired zinc oxide with morphology-dependent photocatalytic activity. Canadian Journal of Chemistry, 2011, 89, 590-597.	1.1	3
144	Fe3S4@reduced graphene oxide composites as novel anode materials for high performance alkaline secondary batteries. Journal of Alloys and Compounds, 2022, 895, 162593.	5.5	3

#	Article	IF	CITATIONS
145	Preparation and characterization of PS/pAPBA core-shell microspheres. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 168-172.	0.4	2