Roger S Lo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10615354/publications.pdf

Version: 2024-02-01

66911 44069 25,914 72 48 78 citations h-index g-index papers 84 84 84 31299 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Plasticity of Extrachromosomal and Intrachromosomal <i>BRAF </i> Amplifications in Overcoming Targeted Therapy Dosage Challenges. Cancer Discovery, 2022, 12, 1046-1069.	9.4	27
2	Enhancing PD-L1 Degradation by ITCH during MAPK Inhibitor Therapy Suppresses Acquired Resistance. Cancer Discovery, 2022, 12, 1942-1959.	9.4	15
3	Durable Suppression of Acquired MEK Inhibitor Resistance in Cancer by Sequestering MEK from ERK and Promoting Antitumor T-cell Immunity. Cancer Discovery, 2021, 11, 714-735.	9.4	45
4	Wound healing with topical BRAF inhibitor therapy in a diabetic model suggests tissue regenerative effects. PLoS ONE, 2021, 16, e0252597.	2.5	4
5	Anti-PD-1/L1 lead-in before MAPK inhibitor combination maximizes antitumor immunity and efficacy. Cancer Cell, 2021, 39, 1375-1387.e6.	16.8	78
6	<i>SPRED1</i> deletion confers resistance to MAPK inhibition in melanoma. Journal of Experimental Medicine, 2021, 218, .	8.5	19
7	Response and recurrence correlates in individuals treated with neoadjuvant anti-PD-1 therapy for resectable oral cavity squamous cell carcinoma. Cell Reports Medicine, 2021, 2, 100411.	6.5	18
8	Neoadjuvant presurgical PD-1 inhibition in oral cavity squamous cell carcinoma. Cell Reports Medicine, 2021, 2, 100426.	6.5	28
9	Melanoma to Vitiligo: The Melanocyte in Biology & Medicine–Joint Montagna Symposium on the Biology of Skin/PanAmerican Society for Pigment Cell Research Annual Meeting. Journal of Investigative Dermatology, 2020, 140, 269-274.	0.7	2
10	Continuous versus intermittent BRAF and MEK inhibition in patients with BRAF-mutated melanoma: a randomized phase 2 trial. Nature Medicine, 2020, 26, 1564-1568.	30.7	71
11	Perspectives in melanoma: meeting report from the "Melanoma Bridge―(December 5th–7th, 2019,) Tj ETo	Qq1 _{4.4} 1 0.7	84314 rgBT
12	Trying for a BRAF Slam Dunk. Cancer Discovery, 2020, 10, 640-642.	9.4	3
13	Multimodel preclinical platform predicts clinical response of melanoma to immunotherapy. Nature Medicine, 2020, 26, 781-791.	30.7	75
14	The great debate at "lmmunotherapy Bridge 2018â€, Naples, November 29th, 2018. , 2019, 7, 221.		4
15	The RNA-binding Protein MEX3B Mediates Resistance to Cancer Immunotherapy by Downregulating HLA-A Expression. Clinical Cancer Research, 2018, 24, 3366-3376.	7.0	73
16	High-Speed Live-Cell Interferometry: A New Method for Quantifying Tumor Drug Resistance and Heterogeneity. Analytical Chemistry, 2018, 90, 3299-3306.	6.5	35
17	Exploiting Drug Addiction Mechanisms to Select against MAPKi-Resistant Melanoma. Cancer Discovery, 2018, 8, 74-93.	9.4	89
18	The Prognostic Significance of Low-Frequency Somatic Mutations in Metastatic Cutaneous Melanoma. Frontiers in Oncology, 2018, 8, 584.	2.8	14

#	Article	IF	CITATIONS
19	Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Reports, 2017, 19, 1189-1201.	6.4	1,256
20	Primary Resistance to PD-1 Blockade Mediated by <i>JAK1/2</i> Mutations. Cancer Discovery, 2017, 7, 188-201.	9.4	997
21	Recurrent Tumor Cell–Intrinsic and –Extrinsic Alterations during MAPKi-Induced Melanoma Regression and Early Adaptation. Cancer Discovery, 2017, 7, 1248-1265.	9.4	134
22	JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma. Cell Discovery, 2016, 2, 16028.	6.7	57
23	sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature, 2016, 532, 250-254.	27.8	290
24	The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 404-416.	3.3	77
25	Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histoneÂdemethylation. Nature Cell Biology, 2016, 18, 1090-1101.	10.3	291
26	Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. New England Journal of Medicine, 2016, 375, 819-829.	27.0	2,430
27	Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors. Nature Communications, 2016, 7, 12348.	12.8	52
28	Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell, 2016, 165, 35-44.	28.9	2,437
29	Vemurafenib resistance reprograms melanoma cells towards glutamine dependence. Journal of Translational Medicine, 2015, 13, 210.	4.4	97
30	Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. European Journal of Cancer, 2015, 51, 2792-2799.	2.8	269
31	Tunable-Combinatorial Mechanisms of Acquired Resistance Limit the Efficacy of BRAF/MEK Cotargeting but Result in Melanoma Drug Addiction. Cancer Cell, 2015, 27, 240-256.	16.8	299
32	Therapy-induced tumour secretomes promote resistance and tumour progression. Nature, 2015, 520, 368-372.	27.8	389
33	Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance. Cell, 2015, 162, 1271-1285.	28.9	516
34	Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10995-11000.	7.1	146
35	Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors. Nature Communications, 2014, 5, 3901.	12.8	68
36	Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nature Communications, 2014, 5, 5712.	12.8	503

#	Article	IF	CITATIONS
37	A Novel AKT1 Mutant Amplifies an Adaptive Melanoma Response to BRAF Inhibition. Cancer Discovery, 2014, 4, 69-79.	9.4	141
38	Detecting Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma. Methods in Molecular Biology, 2014, 1102, 163-174.	0.9	14
39	Acquired Resistance and Clonal Evolution in Melanoma during BRAF Inhibitor Therapy. Cancer Discovery, 2014, 4, 80-93.	9.4	836
40	Response of <i>BRAF</i> -Mutant Melanoma to BRAF Inhibition Is Mediated by a Network of Transcriptional Regulators of Glycolysis. Cancer Discovery, 2014, 4, 423-433.	9.4	242
41	Antitumor activity of the ERK inhibitor SCH722984 against BRAF mutant, NRAS mutant and wild-type melanoma. Molecular Cancer, 2014, 13, 194.	19.2	90
42	COXâ€2 inhibition prevents the appearance of cutaneous squamous cell carcinomas accelerated by BRAF inhibitors. Molecular Oncology, 2014, 8, 250-260.	4.6	37
43	Melanoma Prognostics and Personalized Therapeutics at a Crossroad. Journal of Investigative Dermatology, 2013, 133, 292-295.	0.7	1
44	Polymer Nanofiberâ€Embedded Microchips for Detection, Isolation, and Molecular Analysis of Single Circulating Melanoma Cells. Angewandte Chemie - International Edition, 2013, 52, 3379-3383.	13.8	194
45	Topical 5-Fluorouracil Elicits Regressions of BRAF Inhibitor–Induced Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2013, 133, 274-276.	0.7	14
46	Pharmacodynamic Effects and Mechanisms of Resistance to Vemurafenib in Patients With Metastatic Melanoma. Journal of Clinical Oncology, 2013, 31, 1767-1774.	1.6	335
47	The HSP90 Inhibitor XL888 Overcomes BRAF Inhibitor Resistance Mediated through Diverse Mechanisms. Clinical Cancer Research, 2012, 18, 2502-2514.	7.0	145
48	Preexisting <i>MEK1</i> Exon 3 Mutations in <i>V600E/K BRAF</i> Melanomas Do Not Confer Resistance to BRAF Inhibitors. Cancer Discovery, 2012, 2, 414-424.	9.4	91
49	Combinatorial therapies to overcome B-RAF inhibitor resistance in melanomas. Pharmacogenomics, 2012, 13, 125-128.	1.3	17
50	Receptor tyrosine kinases in cancer escape from BRAF inhibitors. Cell Research, 2012, 22, 945-947.	12.0	26
51	Intratumoral Molecular Heterogeneity in a <i>BRAF</i> Mutant, BRAF Inhibitor-Resistant Melanoma: A Case Illustrating the Challenges for Personalized Medicine. Molecular Cancer Therapeutics, 2012, 11, 2704-2708.	4.1	78
52	Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Molecular Systems Biology, 2012, 8, 589.	7.2	168
53	<i>RAS</i> Mutations in Cutaneous Squamous-Cell Carcinomas in Patients Treated with BRAF Inhibitors. New England Journal of Medicine, 2012, 366, 207-215.	27.0	978
54	MDM4 is a key therapeutic target in cutaneous melanoma. Nature Medicine, 2012, 18, 1239-1247.	30.7	266

#	Article	IF	CITATIONS
55	Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genetics, 2012, 44, 1006-1014.	21.4	1,052
56	Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nature Communications, 2012, 3, 724.	12.8	567
57	Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature, 2012, 487, 500-504.	27.8	1,561
58	Reversing Melanoma Cross-Resistance to BRAF and MEK Inhibitors by Co-Targeting the AKT/mTOR Pathway. PLoS ONE, 2011, 6, e28973.	2.5	196
59	RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature, 2011, 480, 387-390.	27.8	1,298
60	Combination therapy with vemurafenib (PLX4032/RG7204) and metformin in melanoma cell lines with distinct driver mutations. Journal of Translational Medicine, 2011, 9, 76.	4.4	82
61	Combinatorial Treatments That Overcome PDGFRÎ ² -Driven Resistance of Melanoma Cells to V600EB-RAF Inhibition. Cancer Research, 2011, 71, 5067-5074.	0.9	206
62	Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 2010, 468, 973-977.	27.8	1,944
63	Differential sensitivity of melanoma cell lines with BRAF V600E mutation to the specific Raf inhibitor PLX4032. Journal of Translational Medicine, 2010, 8, 39.	4.4	203
64	Transforming Growth Factor-β Activation Promotes Genetic Context–Dependent Invasion of Immortalized Melanocytes. Cancer Research, 2008, 68, 4248-4257.	0.9	23
65	TGFÎ ² Signaling in Growth Control, Cancer, and Heritable Disorders. Cell, 2000, 103, 295-309.	28.9	2,239
66	Multiple Modes of Repression by the Smad Transcriptional Corepressor TGIF. Journal of Biological Chemistry, 1999, 274, 37105-37110.	3.4	170
67	Ubiquitin-dependent degradation of TGF- \hat{l}^2 -activated Smad2. Nature Cell Biology, 1999, 1, 472-478.	10.3	321
68	A Smad Transcriptional Corepressor. Cell, 1999, 97, 29-39.	28.9	523
69	Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature, 1997, 388, 82-87.	27.8	345
70	A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature, 1997, 388, 87-93.	27.8	436
71	A Conserved Glutamate Is Responsible for Ion Selectivity and pH Dependence of the Mammalian Anion Exchangers AE1 and AE2. Journal of Biological Chemistry, 1995, 270, 28751-28758.	3.4	47
72	Sulfate Transport Mediated by the Mammalian Anion Exchangers in Reconstituted Proteoliposomes. Journal of Biological Chemistry, 1995, 270, 11251-11256.	3.4	30