Grzegorz Ira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10614538/publications.pdf

Version: 2024-02-01

54 8,851 papers citations

34 48
h-index g-index

58 58 all docs citations

58 times ranked 8067 citing authors

#	Article	IF	CITATIONS
1	Mechanisms of change in gene copy number. Nature Reviews Genetics, 2009, 10, 551-564.	16.3	1,066
2	Sgs1 Helicase and Two Nucleases Dna2 and Exo1 Resect DNA Double-Strand Break Ends. Cell, 2008, 134, 981-994.	28.9	915
3	A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation. PLoS Genetics, 2009, 5, e1000327.	3.5	700
4	DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature, 2004, 431, 1011-1017.	27.8	641
5	Srs2 and Sgs1–Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast. Cell, 2003, 115, 401-411.	28.9	539
6	Distribution and Dynamics of Chromatin Modification Induced by a Defined DNA Double-Strand Break. Current Biology, 2004, 14, 1703-1711.	3.9	458
7	Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature, 2010, 467, 108-111.	27.8	349
8	MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nature Communications, 2017, 8, 860.	12.8	311
9	Recovery from Checkpoint-Mediated Arrest after Repair of a Double-Strand Break Requires Srs2 Helicase. Molecular Cell, 2002, 10, 373-385.	9.7	310
10	Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature, 2013, 502, 389-392.	27.8	277
11	Pif1 helicase and Poll´ promote recombination-coupled DNA synthesis via bubble migration. Nature, 2013, 502, 393-396.	27.8	265
12	DNA Length Dependence of the Single-Strand Annealing Pathway and the Role of Saccharomyces cerevisiae RAD59 in Double-Strand Break Repair. Molecular and Cellular Biology, 2000, 20, 5300-5309.	2.3	264
13	Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes and Development, 2009, 23, 67-79.	5.9	226
14	The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends. Nature, 2012, 489, 576-580.	27.8	219
15	Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO Journal, 2010, 29, 3370-3380.	7.8	197
16	Characterization of RAD51 -Independent Break-Induced Replication That Acts Preferentially with Short Homologous Sequences. Molecular and Cellular Biology, 2002, 22, 6384-6392.	2.3	172
17	Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nature Structural and Molecular Biology, 2011, 18, 1015-1019.	8.2	165
18	Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science, 2015, 349, 742-747.	12.6	162

#	Article	IF	Citations
19	RAD51 -Dependent Break-Induced Replication Differs in Kinetics and Checkpoint Responses from RAD51 -Mediated Gene Conversion. Molecular and Cellular Biology, 2005, 25, 933-944.	2.3	157
20	Break-induced replication: functions and molecular mechanism. Current Opinion in Genetics and Development, 2013, 23, 271-279.	3.3	156
21	Defective Resection at DNA Double-Strand Breaks Leads to De Novo Telomere Formation and Enhances Gene Targeting. PLoS Genetics, 2010, 6, e1000948.	3.5	147
22	Role of DNA Replication Proteins in Double-Strand Break-Induced Recombination in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2004, 24, 6891-6899.	2.3	118
23	Translesion Polymerases Drive Microhomology-Mediated Break-Induced Replication Leading to Complex Chromosomal Rearrangements. Molecular Cell, 2015, 60, 860-872.	9.7	112
24	Predicting human genes susceptible to genomic instability associated with <i>Alu</i> /i>/Alu/i>-mediated rearrangements. Genome Research, 2018, 28, 1228-1242.	5.5	74
25	Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2. Cell, 2019, 176, 1310-1324.e10.	28.9	73
26	Human Nuclease/Helicase DNA2 Alleviates Replication Stress by Promoting DNA End Resection. Cancer Research, 2012, 72, 2802-2813.	0.9	63
27	Role of the Pif1-PCNA Complex in Pol Î'-Dependent Strand Displacement DNA Synthesis and Break-Induced Replication. Cell Reports, 2017, 21, 1707-1714.	6.4	62
28	Conservative Inheritance of Newly Synthesized DNA in Double-Strand Break-Induced Gene Conversion. Molecular and Cellular Biology, 2006, 26, 9424-9429.	2.3	56
29	Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2. Nature Communications, 2017, 8, 1790.	12.8	55
30	Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microbial Cell, 2019, 6, 1-64.	3.2	47
31	RSC Facilitates Rad59-Dependent Homologous Recombination between Sister Chromatids by Promoting Cohesin Loading at DNA Double-Strand Breaks. Molecular and Cellular Biology, 2011, 31, 3924-3937.	2.3	45
32	Absence of Heterozygosity Due to Template Switching during Replicative Rearrangements. American Journal of Human Genetics, 2015, 96, 555-564.	6.2	45
33	Mechanisms restraining breakâ€induced replication at twoâ€ended DNA doubleâ€strand breaks. EMBO Journal, 2021, 40, e104847.	7.8	45
34	Yeast Sub1 and human PC4 are G-quadruplex binding proteins that suppress genome instability at co-transcriptionally formed G4 DNA. Nucleic Acids Research, 2017, 45, 5850-5862.	14.5	41
35	Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection. Nucleic Acids Research, 2016, 44, 2742-2753.	14.5	39
36	Bre1-dependent H2B ubiquitination promotes homologous recombination by stimulating histone eviction at DNA breaks. Nucleic Acids Research, 2018, 46, 11326-11339.	14.5	37

#	Article	IF	Citations
37	Rad52 Restrains Resection at DNA Double-Strand Break Ends in Yeast. Molecular Cell, 2019, 76, 699-711.e6.	9.7	37
38	Tracking break-induced replication shows that it stalls at roadblocks. Nature, 2021, 590, 655-659.	27.8	36
39	A novel role of the Dna2 translocase function in DNA break resection. Genes and Development, 2017, 31, 503-510.	5.9	33
40	Dna2 nuclease deficiency results in large and complex DNA insertions at chromosomal breaks. Nature, 2018, 564, 287-290.	27.8	33
41	A Rad51-independent pathway promotes single-strand template repair in gene editing. PLoS Genetics, 2020, 16, e1008689.	3.5	33
42	Selective modulation of the functions of a conserved DNA motor by a histone fold complex. Genes and Development, 2015, 29, 1000-1005.	5.9	17
43	Differential regulation of the anti-crossover and replication fork regression activities of Mph1 by Mte1. Genes and Development, 2016, 30, 687-699.	5.9	17
44	Deciphering the mechanism of processive ssDNA digestion by the Dna2-RPA ensemble. Nature Communications, 2022, 13, 359.	12.8	12
45	Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	10
46	DNA breakage drives nuclear search. Nature Cell Biology, 2012, 14, 448-450.	10.3	6
47	A new Riff: Rif1 eats its cake and has it too. EMBO Reports, 2014, 15, 622-4.	4.5	5
48	Analysis of DNA Double-Strand Break End Resection and Single-Strand Annealing in S. pombe. Methods in Molecular Biology, 2021, 2153, 47-57.	0.9	1
49	Mechanism and Regulation of the Helicaseâ€driven Path of DNA End Resection in Saccharomyces cerevisiae. FASEB Journal, 2012, 26, 536.7.	0.5	0
50	Measuring the contributions of helicases to break-induced replication. Methods in Enzymology, 2022, , 339-368.	1.0	0
51	A Rad51-independent pathway promotes single-strand template repair in gene editing. , 2020, 16, e1008689.		0
52	A Rad51-independent pathway promotes single-strand template repair in gene editing. , 2020, 16, e1008689.		0
53	A Rad51-independent pathway promotes single-strand template repair in gene editing. , 2020, 16, e1008689.		0
54	A Rad51-independent pathway promotes single-strand template repair in gene editing. , 2020, 16, e1008689.		0