Jose Miguel Martinez Zapater

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1061250/publications.pdf

Version: 2024-02-01

129 11,001 59 101 papers citations h-index g-index

131 131 131 9763 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Challenges of viticulture adaptation to global change: tackling the issue from the roots. Australian Journal of Grape and Wine Research, 2021, 27, 8-25.	2.1	46
2	Whole genome resequencing and custom genotyping unveil clonal lineages in â€Malbec' grapevines (Vitis vinifera L.). Scientific Reports, 2021, 11, 7775.	3.3	12
3	Genetic variation and association analyses identify genes linked to fruit set-related traits in grapevine. Plant Science, 2021, 306, 110875.	3.6	5
4	Is aromatic terpenoid composition of grapes in Northwestern Iberian wine cultivars related to variation in VviDXS1 gene?. Journal of Berry Research, 2021, 11, 187-200.	1.4	1
5	Characterization of Tempranillo negro (VN21), a high phenolic content grapevine Tempranillo clone, through UHPLC-QqQ-MS/MS polyphenol profiling. Food Chemistry, 2021, 360, 130049.	8.2	10
6	Reduced gamete viability associated to somatic genome rearrangements increases fruit set sensitivity to the environment in Tempranillo Blanco grapevine cultivar. Scientia Horticulturae, 2021, 290, 110497.	3.6	2
7	SSR and SNP genetic profiling of Armenian grape cultivars gives insights into their identity and pedigree relationships. Oeno One, 2021, 55, 101-114.	1.4	8
8	Grapevine Diversity and Genetic Relationships in Northeast Portugal Old Vineyards. Plants, 2021, 10, 2755.	3.5	9
9	Population genetic analysis in old Montenegrin vineyards reveals ancient ways currently active to generate diversity in Vitis vinifera. Scientific Reports, 2020, 10, 15000.	3.3	22
10	Composition and biological activity of the Algerian plant Rosa canina L. by HPLC-UV-MS. Arabian Journal of Chemistry, 2020, 13, 1105-1119.	4.9	32
11	Characterization of deletions causing berry-color variation in Garnacha and Tempranillo. Acta Horticulturae, 2019, , 463-470.	0.2	1
12	Grape color variation involves genetic and micro-environmental changes that alter berry phenolic and aromatic composition. Acta Horticulturae, 2019, , 471-478.	0.2	2
13	Somatic Variation and Cultivar Innovation in Grapevine. , 2019, , .		13
14	Genetic variation for grapevine reproductive development. Acta Horticulturae, 2019, , 319-326.	0.2	3
15	The Major Origin of Seedless Grapes Is Associated with a Missense Mutation in the MADS-Box Gene <i>VviAGL11</i> . Plant Physiology, 2018, 177, 1234-1253.	4.8	102
16	Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS ONE, 2018, 13, e0192540.	2.5	164
17	Catastrophic Unbalanced Genome Rearrangements Cause Somatic Loss of Berry Color in Grapevine. Plant Physiology, 2017, 175, 786-801.	4.8	98
18	Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses. Frontiers in Plant Science, 2016, 7, 353.	3 . 6	101

#	Article	IF	CITATIONS
19	Comparative genome-wide transcriptome analysis of Vitis vinifera responses to adapted and non-adapted strains of two-spotted spider mite, Tetranyhus urticae. BMC Genomics, 2016, 17, 74.	2.8	53
20	Expression of grapevine AINTEGUMENTA-like genes is associated with variation in ovary and berry size. Plant Molecular Biology, 2016, 91, 67-80.	3.9	13
21	Reducing sampling bias in molecular studies of grapevine fruit ripening: transcriptomic assessment of the density sorting method. Theoretical and Experimental Plant Physiology, 2016, 28, 109-129.	2.4	16
22	Structural and functional annotation of the MADS-box transcription factor family in grapevine. BMC Genomics, 2016, 17, 80.	2.8	64
23	Developmental, transcriptome, and genetic alterations associated with parthenocarpy in the grapevine seedless somatic variant Corinto bianco. Journal of Experimental Botany, 2016, 67, 259-273.	4.8	61
24	Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine. BMC Plant Biology, 2015, 15, 253.	3.6	41
25	Quantitative genetic analysis of berry firmness in table grape (Vitis vinifera L.). Tree Genetics and Genomes, $2015, 11, 1$.	1.6	33
26	Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Journal of Experimental Botany, 2015, 66, 1769-1785.	4.8	144
27	Grapevine breeding and clonal selection programmes in Spain. , 2015, , 183-209.		17
28	Transcriptional Analysis of Tendril and Inflorescence Development in Grapevine (Vitis vinifera L.). PLoS ONE, 2014, 9, e92339.	2.5	40
29	The genetic structure of Arabidopsis thaliana in the south-western Mediterranean range reveals a shared history between North Africa and southern Europe. BMC Plant Biology, 2014, 14, 17.	3.6	53
30	Comparative ampelographic and genetic analysis of grapevine cultivars from Algeria and Morocco. Australian Journal of Grape and Wine Research, 2014, 20, 324-333.	2.1	9
31	Chromatin-Dependent Repression of the <i>Arabidopsis</i> Floral Integrator Genes Involves Plant Specific PHD-Containing Proteins Â. Plant Cell, 2014, 26, 3922-3938.	6.6	71
32	Haplotype diversity of VvTFL1A gene and association with cluster traits ingrapevine (V. vinifera). BMC Plant Biology, 2014, 14, 209.	3.6	26
33	Relationships among Gene Expression and Anthocyanin Composition of Malbec Grapevine Clones. Journal of Agricultural and Food Chemistry, 2014, 62, 6716-6725.	5.2	31
34	Genetic diversity and parentage of Tunisian wild and cultivated grapevines (Vitis vinifera L.) as revealed by single nucleotide polymorphism (SNP) markers. Tree Genetics and Genomes, 2014, 10, 1103-1112.	1.6	16
35	Circadian oscillatory transcriptional programs in grapevine ripening fruits. BMC Plant Biology, 2014, 14, 78.	3.6	35
36	Dissecting the Transcriptional Response to Elicitors in Vitis vinifera Cells. PLoS ONE, 2014, 9, e109777.	2.5	56

#	Article	IF	CITATIONS
37	Genetic Identification and Origin of Grapevine Cultivars (<i>Vitis vinifera</i> L) in Tunisia. American Journal of Enology and Viticulture, 2013, 64, 538-544.	1.7	5
38	Misâ€expression of a <i><scp>PISTILLATA</scp>â€</i> like <scp>MADS</scp> box gene prevents fruit development in grapevine. Plant Journal, 2013, 73, 918-928.	5.7	47
39	Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology, 2013, 13, 39.	3.6	325
40	The Flowering Repressor SVP Underlies a Novel Arabidopsis thaliana QTL Interacting with the Genetic Background. PLoS Genetics, 2013, 9, e1003289.	3.5	58
41	Thermotolerance Responses in Ripening Berries of Vitis vinifera L. cv Muscat Hamburg. Plant and Cell Physiology, 2013, 54, 1200-1216.	3.1	123
42	Identification by SNP Analysis of a Major Role for Cayetana Blanca in the Genetic Network of Iberian Peninsula Grapevine Varieties. American Journal of Enology and Viticulture, 2012, 63, 121-126.	1.7	16
43	Genetic Origin of the Grapevine Cultivar Tempranillo. American Journal of Enology and Viticulture, 2012, 63, 549-553.	1.7	33
44	Marker assisted selection for seedlessness in table grape breeding. Tree Genetics and Genomes, 2012, 8, 1003-1015.	1.6	51
45	Transcriptome variation along bud development in grapevine (Vitis viniferaL.). BMC Plant Biology, 2012, 12, 181.	3.6	83
46	Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Research Notes, 2012, 5, 213.	1.4	176
47	Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling. PLoS ONE, 2012, 7, e39547.	2.5	108
48	Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Molecular Ecology, 2012, 21, 800-816.	3.9	130
49	Novel natural alleles at <i>FLC</i> and <i>LVR</i> loci account for enhanced vernalization responses in <i>Arabidopsis thaliana</i> Plant, Cell and Environment, 2012, 35, 1672-1684.	5.7	45
50	Altitudinal and Climatic Adaptation Is Mediated by Flowering Traits and <i>FRI</i> , <i>FLC</i> , and <i>PHYC</i> Genes in Arabidopsis Â. Plant Physiology, 2011, 157, 1942-1955.	4.8	171
51	Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biology, 2011, 11, 149.	3.6	133
52	A 48 SNP set for grapevine cultivar identification. BMC Plant Biology, 2011, 11, 153.	3.6	127
53	Transcriptome changes in grapevine (Vitis viniferal.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biology, 2010, 10, 224.	3.6	120
54	Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant Journal, 2010, 61, 545-557.	5.7	116

#	Article	IF	CITATIONS
55	<i>EARLY IN SHORT DAYS 7</i> (<i>ESD7</i>) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing. Plant Journal, 2010, 61, 623-636.	5 . 7	68
56	Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in Arabidopsis thaliana. Journal of Experimental Botany, 2010, 61, 1611-1623.	4.8	56
57	Grapevine genetics after the genome sequence: Challenges and limitations. Australian Journal of Grape and Wine Research, 2010, 16, 33-46.	2.1	49
58	Chromatin remodeling in plant development. International Journal of Developmental Biology, 2009, 53, 1581-1596.	0.6	91
59	Genome-Wide Analysis of MIKCC-Type MADS Box Genes in Grapevine Â. Plant Physiology, 2009, 149, 354-369.	4.8	194
60	A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis. BMC Plant Biology, 2009, 9, 147.	3.6	57
61	Molecular Maps, Qtl Mapping & Association Mapping In Grapevine. , 2009, , 535-563.		3
62	Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Research Notes, 2008, 1, 132.	1.4	147
63	A molecular genetic perspective of reproductive development in grapevine. Journal of Experimental Botany, 2008, 59, 2579-2596.	4.8	139
64	Natural Genetic Variation of <i> Arabidopsis thaliana </i> Is Geographically Structured in the Iberian Peninsula. Genetics, 2008, 180, 1009-1021.	2.9	116
65	Characterization of Vitis vinifera L. somatic variants exhibiting abnormal flower development patterns. Journal of Experimental Botany, 2007, 58, 4107-4118.	4.8	32
66	Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat) Tj ETQq0 0 0 rgB 402, 40-50.	T /Overloc 2.2	k 10 Tf 50 30 45
67	Flowering transition in grapevine (Vitis vinifera L.)This review is one of a selection of papers presented at the symposium on Vitis at the XVII International Botanical Congress held in Vienna, Austria, 2005 Canadian Journal of Botany, 2007, 85, 701-711.	1.1	37
68	Quantitative genetic analysis of flowering time in tomato. Genome, 2007, 50, 303-315.	2.0	36
69	High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics, 2007, 8, 424.	2.8	227
70	The FT/TFL1 gene family in grapevine. Plant Molecular Biology, 2007, 63, 637-650.	3.9	167
71	A genetic analysis of seed and berry weight in grapevine. Genome, 2006, 49, 1572-1585.	2.0	139
72	Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molecular Ecology, 2006, 15, 3707-3714.	3.9	423

#	Article	IF	CITATIONS
73	Molecular genetics of berry colour variation in table grape. Molecular Genetics and Genomics, 2006, 276, 427-435.	2.1	144
74	Combining microsatellite markers and capillary gel electrophoresis with laser-induced fluorescence to identify the grape (Vitis vinifera) variety of musts. European Food Research and Technology, 2006, 223, 625-631.	3.3	27
75	EARLY IN SHORT DAYS 1 (ESD1) encodes ACTIN-RELATED PROTEIN 6 (AtARP6), a putative component of chromatin remodelling complexes that positively regulates FLC accumulation in Arabidopsis. Development (Cambridge), 2006, 133, 1241-1252.	2.5	144
76	Evaluation of Microsatellite Detection Using Autoradiography and Capillary Electrophoresis in Hops. Journal of the American Society of Brewing Chemists, 2005, 63, 57-62.	1.1	3
77	DNA methylation increases throughout Arabidopsis development. Planta, 2005, 222, 301-306.	3.2	93
78	Environmental regulation of flowering. International Journal of Developmental Biology, 2005, 49, 689-705.	0.6	149
79	Genetic and Molecular Analyses of Natural Variation Indicate CBF2 as a Candidate Gene for Underlying a Freezing Tolerance Quantitative Trait Locus in Arabidopsis. Plant Physiology, 2005, 139, 1304-1312.	4.8	149
80	Floral Meristem Identity Genes Are Expressed during Tendril Development in Grapevine. Plant Physiology, 2004, 135, 1491-1501.	4.8	118
81	Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genetics, 2004, 36, 162-166.	21.4	347
82	Expression of Arabidopsis APETALA1 in tomato reduces its vegetative cycle without affecting plant production. Molecular Breeding, 2004, 13, 155-163.	2.1	21
83	Genetic relationship among cultivated and wild grapevine accessions from Tunisia. Genome, 2004, 47, 1211-1219.	2.0	55
84	EARLY BOLTING IN SHORT DAYS Is Related to Chromatin Remodeling Factors and Regulates Flowering in Arabidopsis by Repressing FT. Plant Cell, 2003, 15, 1552-1562.	6.6	121
85	Mutations in the Ca2+/H+ Transporter CAX1 Increase CBF/DREB1 Expression and the Cold-Acclimation Response in Arabidopsis. Plant Cell, 2003, 15, 2940-2951.	6.6	170
86	Selfing and sibship structure in a two-cohort stand of maritime pine (Pinus pinaster Ait.) using nuclear SSR markers. Annals of Forest Science, 2003, 60, 115-121.	2.0	17
87	VFL, the Grapevine FLORICAULA/LEAFYOrtholog, Is Expressed in Meristematic Regions Independently of Their Fate. Plant Physiology, 2002, 130, 68-77.	4.8	127
88	Chloroplast microsatellite polymorphisms in Vitisspecies. Genome, 2002, 45, 1142-1149.	2.0	117
89	Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. Theoretical and Applied Genetics, 2002, 104, 1290-1297.	3.6	76
90	Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Molecular Genetics and Genomics, 2002, 268, 543-552.	2.1	250

#	Article	IF	CITATIONS
91	Genetic structure of natural populations of the grass endophyte Epichloe festucae in semiarid grasslands. Molecular Ecology, 2002, 11, 355-364.	3.9	41
92	A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant Journal, 2002, 32, 13-24.	5.7	121
93	Growing up fast: manipulating the generation time of trees. Current Opinion in Biotechnology, 2002, 13, 151-155.	6.6	38
94	AFLP evaluation of genetic similarity among laurel populations (Laurus L.). Euphytica, 2001, 122, 155-164.	1.2	41
95	Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotechnology, 2001, 19, 263-267.	17.5	355
96	Ancient asymmetries in the evolution of flowers. Current Biology, 2001, 11, 1050-1052.	3.9	147
97	A Brassica oleracea Gene Expressed in a Variety-Specific Manner May Encode a Novel Plant Transmembrane Receptor. Plant and Cell Physiology, 2001, 42, 404-413.	3.1	8
98	early bolting in short days: An Arabidopsis Mutation That Causes Early Flowering and Partially Suppresses the Floral Phenotype of leafy. Plant Cell, 2001, 13, 1011-1024.	6.6	71
99	Characterisation of Iberian pig genotypes using AFLP markers. Animal Genetics, 2000, 31, 117-122.	1.7	33
100	Mutations causing defects in the biosynthesis and response to gibberellins, abscisic acid and phytochrome B do not inhibit vernalization in Arabidopsis fca-1. Planta, 2000, 210, 677-682.	3.2	49
101	Genetic relationships among biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) based on AFLP analysis. Bulletin of Entomological Research, 2000, 90, 391-396.	1.0	75
102	A freezing-sensitive mutant of Arabidopsis , frs1 , is a new aba3 allele. Planta, 2000, 211, 648-655.	3.2	60
103	Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant Journal, 1999, 20, 581-590.	5.7	168
104	Identification of genes specifically expressed in cauliflower reproductive meristems. Molecular characterization of BoREM1. Plant Molecular Biology, 1999, 39, 427-436.	3.9	16
105	Dimerization of Arabidopsis 14-3-3 proteins: structural requirements within the N-terminal domain and effect of calcium. FEBS Letters, 1999, 462, 377-382.	2.8	29
106	Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theoretical and Applied Genetics, 1998, 97, 51-59.	3.6	164
107	Low temperature regulates Arabidopsis Lhcb gene expression in a light-independent manner. Plant Journal, 1998, 13, 411-418.	5.7	30
108	Isolation and molecular characterization of theArabidopsis TPS1gene, encoding trehaloseâ€6â€phosphate synthase. Plant Journal, 1998, 13, 685-689.	5.7	215

#	Article	IF	CITATIONS
109	Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis Plant Cell, 1997, 9, 1921-1934.	6.6	181
110	Two Homologous Low-Temperature-Inducible Genes from Arabidopsis Encode Highly Hydrophobic Proteins. Plant Physiology, 1997, 115, 569-576.	4.8	100
111	Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development. Plant Journal, 1995, 7, 543-551.	5.7	74
112	Low Temperature Induces the Accumulation of Phenylalanine Ammonia-Lyase and Chalcone Synthase mRNAs of Arabidopsis thaliana in a Light-Dependent Manner. Plant Physiology, 1995, 108, 39-46.	4.8	387
113	The regulation of flowering in Arabidopsis thaliana: meristems, morphogenesis, and mutants. Canadian Journal of Botany, 1995, 73, 959-981.	1.1	60
114	Regulation of the rab17 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA-insensitive mutants. Plant Molecular Biology, 1994, 24, 561-569.	3.9	28
115	Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins, a family of putative kinase regulators. Plant Molecular Biology, 1994, 25, 693-704.	3.9	110
116	NATO-ASI course on plant molecular biology. Plant Molecular Biology Reporter, 1993, 11, 350-358.	1.8	0
117	Non-random distribution of transposable elements in the nuclear genome of plants. Nucleic Acids Research, 1993, 21, 2369-2373.	14.5	26
118	Low Temperature Induces the Accumulation of Alcohol Dehydrogenase mRNA in Arabidopsis thaliana, a Chilling-Tolerant Plant. Plant Physiology, 1993, 101, 833-837.	4.8	102
119	Genetic Analysis of Variegated Mutants in Arabidopsis. Journal of Heredity, 1993, 84, 138-140.	2.4	37
120	The distribution of 5-methylcytosine in the nuclear genome of plants. Nucleic Acids Research, 1992, 20, 3207-3210.	14.5	49
121	Mutations at the Arabidopsis CHM locus promote rearrangements of the mitochondrial genome Plant Cell, 1992, 4, 889-899.	6.6	146
122	Chloroplast genes transferred to the nuclear plant genome have adjusted to nuclear base composition and codon usage. Nucleic Acids Research, 1990, 18, 65-73.	14.5	39
123	Effect of Light Quality and Vernalization on Late-Flowering Mutants of <i>Arabidopsis thaliana</i> Plant Physiology, 1990, 92, 770-776.	4.8	168
124	AP2 Gene Determines the Identity of Perianth Organs in Flowers of Arabidopsis thaliana. Plant Cell, 1989, 1, 1195.	6.6	84
125	Drosophila P-element transcripts are incorrectly processed in tobacco. Plant Molecular Biology, 1988, 11, 601-607.	3.9	11
126	A highly repeated DNA sequence in Arabidopsis thaliana. Molecular Genetics and Genomics, 1986, 204, 417-423.	2.4	236

#	Article	IF	CITATIONS
127	Isozyme gene duplication in diploid and tetraploid potatoes. Theoretical and Applied Genetics, 1985, 70, 172-177.	3.6	14
128	A genetic classification of potato cultivars based on allozyme patterns. Theoretical and Applied Genetics, 1985, 69, 305-311.	3.6	33
129	B-Chromosomes and E-1 isozyme activity in mosaic bulbs of Scilla autumnalis (Liliaceae). Chromosoma, 1982, 85, 399-403.	2.2	20