Claudia Verderio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1060861/publications.pdf

Version: 2024-02-01

19657 30922 11,092 121 61 102 citations h-index g-index papers 122 122 122 12993 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microglial large extracellular vesicles propagate early synaptic dysfunction in Alzheimer's disease. Brain, 2022, 145, 2849-2868.	7.6	32
2	Therapeutic induction of energy metabolism reduces neural tissue damage and increases microglia activation in severe spinal cord injury. Pharmacological Research, 2022, 178, 106149.	7.1	17
3	miR-150-5p and let-7b-5p in Blood Myeloid Extracellular Vesicles Track Cognitive Symptoms in Patients with Multiple Sclerosis. Cells, 2022, 11, 1551.	4.1	8
4	Extracellular transglutaminase-2, nude or associated with astrocytic extracellular vesicles, modulates neuronal calcium homeostasis. Progress in Neurobiology, 2022, 216, 102313.	5 . 7	7
5	Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. Journal of Colloid and Interface Science, 2021, 582, 678-700.	9.4	27
6	Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis. Molecular Therapy, 2021, 29, 1439-1458.	8.2	55
7	Microglia-oligodendrocyte intercellular communication: role of extracellular vesicle lipids in functional signalling. Neural Regeneration Research, 2021, 16, 1194.	3.0	8
8	The immune-inflammatory response of oligodendrocytes in a murine model of preterm white matter injury: the role of TLR3 activation. Cell Death and Disease, 2021, 12, 166.	6.3	26
9	Role of ATP in Extracellular Vesicle Biogenesis and Dynamics. Frontiers in Pharmacology, 2021, 12, 654023.	3.5	23
10	Astrocytesâ€derived extracellular vesicles in motion at the neuron surface: Involvement of the prion protein. Journal of Extracellular Vesicles, 2021, 10, e12114.	12.2	19
11	TNF Production and Release from Microglia via Extracellular Vesicles: Impact on Brain Functions. Cells, 2020, 9, 2145.	4.1	63
12	Immune and central nervous system-related miRNAs expression profiling in monocytes of multiple sclerosis patients. Scientific Reports, 2020, 10, 6125.	3.3	27
13	Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathologica, 2019, 138, 987-1012.	7.7	120
14	Proteomic Profiling Reveals the Transglutaminase-2 Externalization Pathway in Kidneys after Unilateral Ureteric Obstruction. Journal of the American Society of Nephrology: JASN, 2018, 29, 880-905.	6.1	40
15	Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathologica, 2018, 135, 529-550.	7.7	196
16	How to reprogram microglia toward beneficial functions. Glia, 2018, 66, 2531-2549.	4.9	80
17	Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. Journal of Lipid Research, 2018, 59, 1325-1340.	4.2	170
18	Cytokines Stimulate the Release of Microvesicles from Myeloid Cells Independently from the P2X7 Receptor/Acid Sphingomyelinase Pathway. Frontiers in Immunology, 2018, 9, 204.	4.8	34

#	Article	IF	CITATIONS
19	Effect of fingolimod action on the release of monocyte-derived microvesicles in multiple sclerosis patients. Journal of Neuroimmunology, 2018, 323, 43-48.	2.3	8
20	Fingolimod Limits Acute A \hat{l}^2 Neurotoxicity and Promotes Synaptic Versus Extrasynaptic NMDA Receptor Functionality in Hippocampal Neurons. Scientific Reports, 2017, 7, 41734.	3.3	27
21	Extracellular proteasome-osteopontin circuit regulates cell migration with implications in multiple sclerosis. Scientific Reports, 2017, 7, 43718.	3.3	35
22	TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nature Communications, 2017, 8, 15292.	12.8	180
23	Synthesis, Structure Characterization, and Evaluation in Microglia Cultures of Neuromelanin Analogues Suitable for Modeling Parkinson's Disease. ACS Chemical Neuroscience, 2017, 8, 501-512.	3.5	40
24	ATP Modifies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on Astrocytes. Frontiers in Pharmacology, 2017, 8, 910.	3.5	109
25	A new approach to follow a single extracellular vesicle—cell interaction using optical tweezers. BioTechniques, 2016, 60, 35.	1.8	54
26	Myeloid Extracellular Vesicles: Messengers from the Demented Brain. Frontiers in Immunology, 2016, 7, 17.	4.8	23
27	Exosomal cellular prion protein drives fibrillization of amyloid beta and counteracts amyloid betaâ€mediated neurotoxicity. Journal of Neurochemistry, 2016, 137, 88-100.	3.9	117
28	Sphingosine-1-Phosphate (S1P) Impacts Presynaptic Functions by Regulating Synapsin I Localization in the Presynaptic Compartment. Journal of Neuroscience, 2016, 36, 4624-4634.	3.6	51
29	The Timing of the Excitatory-to-Inhibitory GABA Switch Is Regulated by the Oxytocin Receptor via KCC2. Cell Reports, 2016, 15, 96-103.	6.4	141
30	Ectonucleotidase activity and immunosuppression in astrocyte-CD4 T cell bidirectional signaling. Oncotarget, 2016, 7, 5143-5156.	1.8	15
31	Active endocannabinoids are secreted on the surface of microglial microvesicles. SpringerPlus, 2015, 4, L29.	1.2	11
32	Subventricular zone neural progenitors reverse TNF-alpha effects in cortical neurons. Stem Cell Research and Therapy, 2015, 6, 166.	5.5	5
33	Microvesicles: What is the Role in Multiple Sclerosis?. Frontiers in Neurology, 2015, 6, 111.	2.4	46
34	Effect of extracellular vesicles derived from distinct brain cells on ${\sf A\hat{I}^2}$ toxicity and assembly: focus on Microglia derived vesicles. SpringerPlus, 2015, 4, .	1.2	0
35	P2Y ₂ receptor antagonists as antiâ€allodynic agents in acute and subâ€chronic trigeminal sensitization: Role of satellite glial cells. Glia, 2015, 63, 1256-1269.	4.9	70
36	Active endocannabinoids are secreted on extracellular membrane vesicles. EMBO Reports, 2015, 16, 213-220.	4.5	182

3

#	Article	IF	Citations
37	Extracellular Vesicles in Alzheimer's Disease: Friends or Foes? Focus on Aβ-Vesicle Interaction. International Journal of Molecular Sciences, 2015, 16, 4800-4813.	4.1	73
38	Glucolipotoxicity Impairs Ceramide Flow from the Endoplasmic Reticulum to the Golgi Apparatus in INS-1 \hat{l}^2 -Cells. PLoS ONE, 2014, 9, e110875.	2.5	25
39	Microglia is a Key Player in the Reduction of Stroke Damage Promoted by the New Antithrombotic Agent Ticagrelor. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 979-988.	4.3	71
40	Testing ${\rm A\hat{l}^2}$ toxicity on primary CNS cultures using drug-screening microfluidic chips. Lab on A Chip, 2014, 14, 2860-2866.	6.0	39
41	Microglia convert aggregated amyloid- \hat{l}^2 into neurotoxic forms through the shedding of microvesicles. Cell Death and Differentiation, 2014, 21, 582-593.	11.2	219
42	Bone Marrow Mesenchymal Stromal Cells Drive Protective M2 Microglia Polarization After Brain Trauma. Neurotherapeutics, 2014, 11, 679-695.	4.4	140
43	Epileptiform Activity and Cognitive Deficits in SNAP-25+/â^' Mice are Normalized by Antiepileptic Drugs. Cerebral Cortex, 2014, 24, 364-376.	2.9	78
44	Myeloid microvesicles in cerebrospinal fluid are associated with myelin damage and neuronal loss in mild cognitive impairment and <scp>A</scp> lzheimer disease. Annals of Neurology, 2014, 76, 813-825.	5.3	91
45	A Simple Method to Generate Adipose Stem Cell-Derived Neurons for Screening Purposes. Journal of Molecular Neuroscience, 2013, 51, 274-281.	2.3	12
46	Nanostructured TiO2 surfaces promote polarized activation of microglia, but not astrocytes, toward a proinflammatory profile. Nanoscale, 2013, 5, 10963.	5.6	22
47	Classical and unconventional pathways of vesicular release in microglia. Glia, 2013, 61, 1003-1017.	4.9	72
48	Reduced SNAPâ€⊋5 alters shortâ€ŧerm plasticity at developing glutamatergic synapses. EMBO Reports, 2013, 14, 645-651.	4.5	64
49	Kainate Induces Mobilization of Synaptic Vesicles at the Growth Cone through the Activation of Protein Kinase A. Cerebral Cortex, 2013, 23, 531-541.	2.9	17
50	Extracellular membrane microvesicles and nanotubes in the brain: understanding their nature, their function in cell-to-cell communication, their role in transcellular spreading of pathological agents and their therapeutic potential. Frontiers in Physiology, 2013, 4, 163.	2.8	11
51	Activated macrophages release microvesicles containing polarized M1 or M2 mRNAs. Journal of Leukocyte Biology, 2013, 95, 817-825.	3.3	76
52	Cracking Down on Inhibition: Selective Removal of GABAergic Interneurons from Hippocampal Networks. Journal of Neuroscience, 2012, 32, 1989-2001.	3.6	40
53	Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO Journal, 2012, 31, 1231-1240.	7.8	266
54	Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Annals of Neurology, 2012, 72, 610-624.	5.3	277

#	Article	IF	CITATIONS
55	Mutant PrP Suppresses Glutamatergic Neurotransmission in Cerebellar Granule Neurons by Impairing Membrane Delivery of VGCC α2Î-1 Subunit. Neuron, 2012, 74, 300-313.	8.1	64
56	Microvesicles: Novel Biomarkers for Neurological Disorders. Frontiers in Physiology, 2012, 3, 63.	2.8	90
57	Microglial microvesicle secretion and intercellular signaling. Frontiers in Physiology, 2012, 3, 149.	2.8	149
58	TIâ€VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biology of the Cell, 2012, 104, 213-228.	2.0	79
59	Calcitonin Gene-Related Peptide-Mediated Enhancement of Purinergic Neuron/Glia Communication by the Algogenic Factor Bradykinin in Mouse Trigeminal Ganglia from Wild-Type and R192Q Ca _v 2.1 Knock-In Mice: Implications for Basic Mechanisms of Migraine Pain. Journal of Neuroscience. 2011, 31, 3638-3649.	3.6	111
60	Selective activation of the transcription factor ATF6 mediates endoplasmic reticulum proliferation triggered by a membrane protein. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7832-7837.	7.1	91
61	ATP in neuron–glia bidirectional signalling. Brain Research Reviews, 2011, 66, 106-114.	9.0	45
62	Phenotypic Changes, Signaling Pathway, and Functional Correlates of GPR17-expressing Neural Precursor Cells during Oligodendrocyte Differentiation. Journal of Biological Chemistry, 2011, 286, 10593-10604.	3.4	154
63	Intrinsic calcium dynamics control botulinum toxin A susceptibility in distinct neuronal populations. Cell Calcium, 2010, 47, 419-424.	2.4	17
64	Endogenous SNAP-25 Regulates Native Voltage-gated Calcium Channels in Glutamatergic Neurons. Journal of Biological Chemistry, 2010, 285, 24968-24976.	3.4	60
65	Expression and contribution of satellite glial cells purinoceptors to pain transmission in sensory ganglia: an update. Neuron Clia Biology, 2010, 6, 31-42.	1.6	64
66	Abscisic Acid Activates the Murine Microglial Cell Line N9 through the Second Messenger Cyclic ADP-ribose. Journal of Biological Chemistry, 2009, 284, 14777-14787.	3.4	64
67	Different properties of P2X7 receptor in hippocampal and cortical astrocytes. Purinergic Signalling, 2009, 5, 233-240.	2.2	35
68	Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO Journal, 2009, 28, 1374-1374.	7.8	2
69	Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO Journal, 2009, 28, 1043-1054.	7.8	499
70	SNAPâ€25 in Neuropsychiatric Disorders. Annals of the New York Academy of Sciences, 2009, 1152, 93-99.	3.8	98
71	VGLUT1 and VGAT are sorted to the same population of synaptic vesicles in subsets of cortical axon terminals. Journal of Neurochemistry, 2009, 110, 1538-1546.	3.9	52
72	The synaptic split of SNAP-25: Different roles in glutamatergic and GABAergic neurons?. Neuroscience, 2009, 158, 223-230.	2.3	33

#	Article	IF	CITATIONS
73	Heterogeneous expression of SNAPâ€25 in rat and human brain. Journal of Comparative Neurology, 2008, 506, 373-386.	1.6	50
74	Heterogeneous expression of SNAP-25 in rat and human brain. Journal of Comparative Neurology, 2008, 506, spc1-spc1.	1.6	1
75	Heterogeneous expression of SNAP-25 in rat and human brain. Journal of Comparative Neurology, 2008, 506, spc1-spc1.	1.6	0
76	Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures. Cell Calcium, 2008, 43, 576-590.	2.4	90
77	Calpain activity contributes to the control of SNAP-25 levels in neurons. Molecular and Cellular Neurosciences, 2008, 39, 314-323.	2.2	18
78	Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 323-328.	7.1	102
79	Purinergic Control of T Cell Activation by ATP Released Through Pannexin-1 Hemichannels. Science Signaling, 2008, 1, ra6.	3.6	357
80	Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. Journal of Cell Biology, 2008, 183, 213-221.	5.2	155
81	The Recently Identified P2Y-Like Receptor GPR17 Is a Sensor of Brain Damage and a New Target for Brain Repair. PLoS ONE, 2008, 3, e3579.	2.5	192
82	Traffic of Botulinum Toxins A and E in Excitatory and Inhibitory Neurons. Traffic, 2007, 8, 142-153.	2.7	87
83	Cross talk between vestibular neurons and Schwann cells mediates BDNF release and neuronal regeneration. Brain Cell Biology, 2007, 35, 187-201.	3.2	42
84	A role for P2X7in microglial proliferation. Journal of Neurochemistry, 2006, 99, 745-758.	3.9	127
85	The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO Journal, 2006, 25, 4615-4627.	7.8	380
86	Entering neurons: botulinum toxins and synaptic vesicle recycling. EMBO Reports, 2006, 7, 995-999.	4.5	87
87	Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. Journal of Physiology, 2006, 570, 567-582.	2.9	116
88	Vesicular transmitter release from astrocytes. Glia, 2006, 54, 700-715.	4.9	291
89	Astrocyte-Derived ATP Induces Vesicle Shedding and IL- $1\hat{l}^2$ Release from Microglia. Journal of Immunology, 2005, 174, 7268-7277.	0.8	514
90	Internalization and Mechanism of Action of Clostridial Toxins in Neurons. NeuroToxicology, 2005, 26, 761-767.	3.0	98

#	Article	IF	Citations
91	Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Research Reviews, 2005, 48, 144-156.	9.0	143
92	Analysis of SNAP-25 immunoreactivity in hippocampal inhibitory neurons during development in culture and in situ. Neuroscience, 2005, 131, 813-823.	2.3	62
93	Glutamate-mediated overexpression of CD38 in astrocytes cultured with neurones. Journal of Neurochemistry, 2004, 89, 264-272.	3.9	52
94	Vesicle turnover in developing neurons: how to build a presynaptic terminal. Trends in Cell Biology, 2004, 14, 133-140.	7.9	39
95	SNAP-25 Modulation of Calcium Dynamics Underlies Differences in GABAergic and Glutamatergic Responsiveness to Depolarization. Neuron, 2004, 41, 599-610.	8.1	192
96	Regulated delivery of AMPA receptor subunits to the presynaptic membrane. EMBO Journal, 2003, 22, 558-568.	7.8	48
97	Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia, 2003, 43, 218-230.	4.9	235
98	Storage and Release of ATP from Astrocytes in Culture. Journal of Biological Chemistry, 2003, 278, 1354-1362.	3.4	441
99	Localization and Functional Relevance of System A Neutral Amino Acid Transporters in Cultured Hippocampal Neurons. Journal of Biological Chemistry, 2002, 277, 10467-10473.	3.4	60
100	Calcium-dependent Cleavage of Endogenous Wild-type Huntingtin in Primary Cortical Neurons. Journal of Biological Chemistry, 2002, 277, 39594-39598.	3.4	73
101	Block of Glutamate-Glutamine Cycle Between Astrocytes and Neurons Inhibits Epileptiform Activity in Hippocampus. Journal of Neurophysiology, 2002, 88, 2302-2310.	1.8	85
102	Spatial and Temporal Regulation of Ca ²⁺ /Calmodulin-Dependent Protein Kinase II Activity in Developing Neurons. Journal of Neuroscience, 2002, 22, 7016-7026.	3.6	43
103	Internalization and Proteolytic Action of Botulinum Toxins in CNS Neurons and Astrocytes. Journal of Neurochemistry, 2002, 73, 372-379.	3.9	62
104	Chronic Blockade of Glutamate Receptors Enhances Presynaptic Release and Downregulates the Interaction between Synaptophysin-Synaptobrevin–Vesicle-Associated Membrane Protein 2. Journal of Neuroscience, 2001, 21, 6588-6596.	3.6	110
105	Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. Journal of Neurochemistry, 2001, 78, 646-657.	3.9	117
106	ATP Mediates Calcium Signaling Between Astrocytes and Microglial Cells: Modulation by IFN-Î ³ . Journal of Immunology, 2001, 166, 6383-6391.	0.8	221
107	Different Localizations and Functions of L-Type and N-Type Calcium Channels during Development of Hippocampal Neurons. Developmental Biology, 2000, 227, 581-594.	2.0	78
108	Tetanus Toxin Blocks the Exocytosis of Synaptic Vesicles Clustered at Synapses But Not of Synaptic Vesicles in Isolated Axons. Journal of Neuroscience, 1999, 19, 6723-6732.	3.6	83

#	Article	IF	Citations
109	A Regulated Secretory Pathway in Cultured Hippocampal Astrocytes. Journal of Biological Chemistry, 1999, 274, 22539-22547.	3.4	142
110	Synaptic and intrinsic mechanisms shape synchronous oscillations in hippocampal neurons in culture. European Journal of Neuroscience, $1999, 11, 389-397$.	2.6	108
111	Astrocytes are required for the oscillatory activity in cultured hippocampal neurons. European Journal of Neuroscience, 1999, 11, 2793-2800.	2.6	43
112	Synaptogenesis in hippocampal cultures. Cellular and Molecular Life Sciences, 1999, 55, 1448-1462.	5.4	50
113	The role of glial cells in synaptic function. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 403-409.	4.0	84
114	Calcium Dependence of Synaptic Vesicle Recycling Before and After Synaptogenesis. Journal of Neurochemistry, 1998, 71, 1987-1992.	3.9	23
115	Non-synaptic Localization of the Glutamate Transporter EAACI in Cultured Hippocampal Neurons. European Journal of Neuroscience, 1997, 9, 1902-1910.	2.6	84
116	Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13310-13315.	7.1	126
117	Calcium-dependent glutamate release during neuronal development and synaptogenesis: different involvement of omega-agatoxin IVA- and omega-conotoxin GVIA-sensitive channels Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6449-6453.	7.1	63
118	Native Nicotinic Acetylcholine Receptors in Human Imr32 Neuroblastoma Cells: Functional, Immunological and Pharmacological Properties. European Journal of Neuroscience, 1995, 7, 2083-2092.	2.6	42
119	Mechanisms of synaptogenesis in hippocampal neurons in primary culture. Journal of Physiology (Paris), 1995, 89, 51-55.	2.1	25
120	Spatial changes in calcium signaling during the establishment of neuronal polarity and synaptogenesis Journal of Cell Biology, 1994, 126, 1527-1536.	5.2	46
121	Pathophysiological Roles of P2 Receptors in Glial Cells. Novartis Foundation Symposium, 0, , 91-106.	1.1	39