A Sesilja Aranko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10607827/publications.pdf

Version: 2024-02-01

687363 713466 21 803 13 21 citations h-index g-index papers 23 23 23 714 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The NMR structure of the engineered halophilic DnaE intein for segmental isotopic labeling using conditional protein splicing. Journal of Magnetic Resonance, 2022, 338, 107195.	2.1	2
2	Recombinant Spider Silk Protein and Delignified Wood Form a Strong Adhesive System. ACS Sustainable Chemistry and Engineering, 2022, 10, 552-561.	6.7	12
3	Liquid–Liquid Phase Separation and Assembly of Silk-like Proteins is Dependent on the Polymer Length. Biomacromolecules, 2022, 23, 3142-3153.	5.4	10
4	The Inducible Intein-Mediated Self-Cleaving Tag (IIST) System: A Novel Purification and Amidation System for Peptides and Proteins. Molecules, 2021, 26, 5948.	3.8	5
5	The Convergence of the Hedgehog/Intein Fold in Different Protein Splicing Mechanisms. International Journal of Molecular Sciences, 2020, 21, 8367.	4.1	2
6	Substrate specificities of inteins investigated by QuickDrop assette mutagenesis. FEBS Letters, 2020, 594, 3338-3355.	2.8	8
7	Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements. Science Advances, 2019, 5, eaaw2541.	10.3	73
8	Molecular crowding facilitates assembly of spidroin-like proteins through phase separation. European Polymer Journal, 2019, 112, 539-546.	5.4	28
9	Phase transitions as intermediate steps in the formation of molecularly engineered protein fibers. Communications Biology, 2018, 1, 86.	4.4	59
10	Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool. Journal of Molecular Biology, 2016, 428, 4573-4588.	4.2	40
11	Nature's recipe for splitting inteins. Protein Engineering, Design and Selection, 2014, 27, 263-271.	2.1	96
12	Structure-based engineering and comparison of novel split inteins for protein ligation. Molecular BioSystems, 2014, 10, 1023-1034.	2.9	48
13	Intermolecular domain swapping induces intein-mediated protein alternative splicing. Nature Chemical Biology, 2013, 9, 616-622.	8.0	49
14	Structural basis for protein <i>trans</i> â€splicing by a bacterial inteinâ€ike domain – protein ligation without nucleophilic side chains. FEBS Journal, 2013, 280, 3256-3269.	4.7	14
15	Protein trans-splicing as a protein ligation tool to study protein structure and function. Biomolecular Concepts, 2011, 2, 183-198.	2.2	10
16	Use of protein transâ€splicing to produce active and segmentally ² H, ¹⁵ N labeled mannuronan C5â€epimerase AlgE4. Protein Science, 2010, 19, 1534-1543.	7.6	14
17	Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nature Protocols, 2010, 5, 574-587.	12.0	69
18	In Vivo and In Vitro Protein Ligation by Naturally Occurring and Engineered Split DnaE Inteins. PLoS ONE, 2009, 4, e5185.	2.5	73

#	Article	IF	CITATIONS
19	Solution structure of DnaE intein from <i>Nostoc punctiforme</i> : Structural basis for the design of a new split intein suitable for siteâ€specific chemical modification. FEBS Letters, 2009, 583, 1451-1456.	2.8	78
20	Segmental Isotopic Labeling of a Central Domain in a Multidomain Protein by Protein <i>Trans</i> â€5plicing Using Only One Robust DnaE Intein. Angewandte Chemie - International Edition, 2009, 48, 6128-6131.	13.8	63
21	Segmental Isotopic Labelling of a Multidomain Protein by Protein Ligation by Protein Transâ€Splicing. ChemBioChem, 2008, 9, 2958-2961.	2.6	46