
Rami Nachabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10604495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accuracy Assessment of Percutaneous Pedicle Screw Placement Using Cone Beam Computed Tomography with Metal Artifact Reduction. Sensors, 2022, 22, 4615.	3.8	1
2	Intraoperative cone beam computed tomography is as reliable as conventional computed tomography for identification of pedicle screw breach in thoracolumbar spine surgery. European Radiology, 2021, 31, 2349-2356.	4.5	16
3	Minimally Invasive Transforaminal Lumbar Interbody Fusion Using Augmented Reality Surgical Navigation for Percutaneous Pedicle Screw Placement. Clinical Spine Surgery, 2021, 34, E415-E424.	1.3	13
4	A Novel Augmented-Reality-Based Surgical Navigation System for Spine Surgery in a Hybrid Operating Room: Design, Workflow, and Clinical Applications. Operative Neurosurgery, 2020, 18, 496-502.	0.8	68
5	Augmented Reality Surgical Navigation in Spine Surgery to Minimize Staff Radiation Exposure. Spine, 2020, 45, E45-E53.	2.0	57
6	Frameless Patient Tracking With Adhesive Optical Skin Markers for Augmented Reality Surgical Navigation in Spine Surgery. Spine, 2020, 45, 1598-1604.	2.0	25
7	Does Augmented Reality Navigation Increase Pedicle Screw Density Compared to Free-Hand Technique in Deformity Surgery? Single Surgeon Case Series of 44 Patients. Spine, 2020, 45, E1085-E1090.	2.0	27
8	Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy. Scientific Reports, 2020, 10, 707.	3.3	76
9	Radiation dose and image quality comparison during spine surgery with two different, intraoperative 3D imaging navigation systems. Journal of Applied Clinical Medical Physics, 2019, 20, 136-145.	1.9	31
10	Pedicle Screw Placement Using Augmented Reality Surgical Navigation With Intraoperative 3D Imaging. Spine, 2019, 44, 517-525.	2.0	150
11	Augmented and Virtual Reality Instrument Tracking for Minimally Invasive Spine Surgery. Spine, 2019, 44, 1097-1104.	2.0	79
12	Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography. Journal of Neurosurgery: Spine, 2019, 31, 147-154.	1.7	48
13	Feasibility and Accuracy of Thoracolumbar Minimally Invasive Pedicle Screw Placement With Augmented Reality Navigation Technology. Spine, 2018, 43, 1018-1023.	2.0	101
14	Augmented Reality on a C-Arm System: A Preclinical Assessment for Percutaneous Needle Localization. Radiology, 2016, 281, 249-255.	7.3	30
15	Surgical Navigation Technology Based on Augmented Reality and Integrated 3D Intraoperative Imaging. Spine, 2016, 41, E1303-E1311.	2.0	123
16	Real-Time In Vivo Characterization of Primary Liver Tumors With Diffuse Optical Spectroscopy During Percutaneous Needle Interventions. Investigative Radiology, 2015, 50, 443-448.	6.2	16
17	Chromophore based analyses of steadyâ€state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption. Journal of Biophotonics, 2015, 8, 9-24.	2.3	79
18	Effect of Real-Time Radiation Dose Feedback on Pediatric Interventional Radiology Staff Radiation Exposure. Journal of Vascular and Interventional Radiology, 2014, 25, 119-126.	0.5	32

КАМІ NACHABE

#	Article	IF	CITATIONS
19	Diffuse reflectance spectroscopy: towards clinical application in breast cancer. Breast Cancer Research and Treatment, 2013, 137, 155-165.	2.5	55
20	Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy. Lung Cancer, 2013, 80, 165-171.	2.0	63
21	Validation of Interventional Fiber Optic Spectroscopy With MR Spectroscopy, MAS-NMR Spectroscopy, High-Performance Thin-Layer Chromatography, and Histopathology for Accurate Hepatic Fat Quantification. Investigative Radiology, 2012, 47, 209-216.	6.2	17
22	Diffuse Reflectance Spectroscopy: A New Guidance Tool for Improvement of Biopsy Procedures in Lung Malignancies. Clinical Lung Cancer, 2012, 13, 424-431.	2.6	48
23	Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples. Biomedical Optics Express, 2011, 2, 600.	2.9	73
24	Epidural needle with embedded optical fibers for spectroscopic differentiation of tissue: ex vivo feasibility study. Biomedical Optics Express, 2011, 2, 1452.	2.9	37
25	Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods. Journal of Biomedical Optics, 2011, 16, 087010.	2.6	119
26	Identification of the Epidural Space with Optical Spectroscopy. Anesthesiology, 2010, 113, 1406-1418.	2.5	30
27	Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900â€,toâ€,1600â€,nm. Journal of Biomedical Optics, 2010, 15, 037015.	2.6	112
28	Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm. Biomedical Optics Express, 2010, 1, 1432.	2.9	106