Sarah Palmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10604488/publications.pdf

Version: 2024-02-01

34105 32842 12,736 100 52 100 h-index citations g-index papers 103 103 103 9035 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cellular Activation, Differentiation, and Proliferation Influence the Dynamics of Genetically Intact Proviruses Over Time. Journal of Infectious Diseases, 2022, 225, 1168-1178.	4.0	9
2	Neurotoxicity with high-dose disulfiram and vorinostat used for HIV latency reversal. Aids, 2022, 36, 75-82.	2.2	7
3	The HIV-1 proviral landscape reveals that Nef contributes to HIV-1 persistence in effector memory CD4+ T cells. Journal of Clinical Investigation, 2022, 132, .	8.2	52
4	Plasma-Derived HIV-1 Virions Contain Considerable Levels of Defective Genomes. Journal of Virology, 2022, 96, jvi0201121.	3.4	18
5	Antiretroviral Initiation at ≥800 CD4+ Cells/mm3 Associated With Lower Human Immunodeficiency Virus Reservoir Size. Clinical Infectious Diseases, 2022, 75, 1781-1791.	5.8	4
6	Evolving Strategies to Eliminate the CD4 T Cells HIV Viral Reservoir via CAR T Cell Immunotherapy. Frontiers in Immunology, 2022, 13, 873701.	4.8	8
7	Extensive characterization of HIV-1 reservoirs reveals links to plasma viremia before and during analytical treatment interruption. Cell Reports, 2022, 39, 110739.	6.4	15
8	Identification of SARS-CoV-2 Nucleocapsid and Spike T-Cell Epitopes for Assessing T-Cell Immunity. Journal of Virology, 2021, 95, .	3.4	48
9	The impact of immune checkpoint therapy on the latent reservoir in HIV-infected individuals with cancer on antiretroviral therapy. Aids, 2021, 35, 1631-1636.	2.2	16
10	Plasmacytoid dendritic cells have divergent effects on HIV infection of initial target cells and induce a pro-retention phenotype. PLoS Pathogens, 2021, 17, e1009522.	4.7	7
11	In-depth single-cell analysis of translation-competent HIV-1 reservoirs identifies cellular sources of plasma viremia. Nature Communications, 2021, 12, 3727.	12.8	43
12	HIV-1 Genomes Are Enriched in Memory CD4 ⁺ T-Cells with Short Half-Lives. MBio, 2021, 12, e0244721.	4.1	11
13	PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. Journal of Cell Biology, 2021, 220, .	5.2	46
14	HIV-DNA content in pTfh cells is associated with residual viremia in elite controllers. Aids, 2021, 35, 393-398.	2.2	1
15	High levels of genetically intact HIV in HLA-DR+ memory T cells indicates their value for reservoir studies. Aids, 2020, 34, 659-668.	2.2	32
16	Evaluating predictive markers for viral rebound and safety assessment in blood and lumbar fluid during HIV-1 treatment interruption. Journal of Antimicrobial Chemotherapy, 2020, 75, 1311-1320.	3.0	15
17	Impact of Antiretroviral Therapy Duration on HIV-1 Infection of T Cells within Anatomic Sites. Journal of Virology, 2020, 94, .	3.4	20
18	Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. ELife, 2020, 9, .	6.0	63

#	Article	IF	Citations
19	For Viral Reservoir Studies, Timing Matters. Trends in Microbiology, 2019, 27, 809-810.	7.7	5
20	Memory CD4 + T-Cells Expressing HLA-DR Contribute to HIV Persistence During Prolonged Antiretroviral Therapy. Frontiers in Microbiology, 2019, 10, 2214.	3.5	38
21	HIV Rebound Is Predominantly Fueled by Genetically Identical Viral Expansions from Diverse Reservoirs. Cell Host and Microbe, 2019, 26, 347-358.e7.	11.0	117
22	Possible clearance of transfusion-acquired nef/LTR-deleted attenuated HIV-1 infection by an elite controller with CCR5 \hat{l} "32 heterozygous and HLA-B57 genotype. Journal of Virus Eradication, 2019, 5, 73-83.	0.5	13
23	Possible clearance of transfusion-acquired /LTR-deleted attenuated HIV-1 infection by an elite controller with CCR5 Î"32 heterozygous and HLA-B57 genotype. Journal of Virus Eradication, 2019, 5, 73-83.	0.5	5
24	The effect of antiretroviral intensification with dolutegravir on residual virus replication in HIV-infected individuals: a randomised, placebo-controlled, double-blind trial. Lancet HIV,the, 2018, 5, e221-e230.	4.7	34
25	Amplification of Near Full-length HIV-1 Proviruses for Next-Generation Sequencing. Journal of Visualized Experiments, 2018 , , .	0.3	13
26	Targeting Immune Checkpoint Molecules to Eliminate Latent HIV. Frontiers in Immunology, 2018, 9, 2339.	4.8	32
27	Genetic characterization of the HIV-1 reservoir after Vacc-4x and romidepsin therapy in HIV-1-infected individuals. Aids, 2018, 32, 1793-1802.	2.2	10
28	Measuring HIV Persistence on Antiretroviral Therapy. Advances in Experimental Medicine and Biology, 2018, 1075, 265-284.	1.6	8
29	Single-molecule techniques to quantify and genetically characterise persistent HIV. Retrovirology, 2018, 15, 3.	2.0	19
30	Programmed cell death-1 contributes to the establishment and maintenance of HIV-1 latency. Aids, 2018, 32, 1491-1497.	2.2	136
31	A proteomic approach to identify endosomal cargoes controlling cancer invasiveness. Journal of Cell Science, 2017, 130, 697-711.	2.0	19
32	Impact of Allogeneic Hematopoietic Stem Cell Transplantation on the HIV Reservoir and Immune Response in 3 HIV-Infected Individuals. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 75, 328-337.	2.1	32
33	Impact of alemtuzumab on HIV persistence in an HIV-infected individual on antiretroviral therapy with Sezary syndrome. Aids, 2017, 31, 1839-1845.	2.2	10
34	Identification of Genetically Intact HIV-1 Proviruses in Specific CD4 + T Cells from Effectively Treated Participants. Cell Reports, 2017, 21, 813-822.	6.4	304
35	Romidepsin-induced HIV-1 viremia during effective antiretroviral therapy contains identical viral sequences with few deleterious mutations. Aids, 2017, 31, 771-779.	2.2	29
36	International AIDS Society global scientific strategy: towards an HIV cure 2016. Nature Medicine, 2016, 22, 839-850.	30.7	395

#	Article	IF	Citations
37	Broad activation of latent HIV-1 in vivo. Nature Communications, 2016, 7, 12731.	12.8	65
38	HIV-1 Reservoirs During Suppressive Therapy. Trends in Microbiology, 2016, 24, 345-355.	7.7	107
39	Anti-HIV Antibody Responses and the HIV Reservoir Size during Antiretroviral Therapy. PLoS ONE, 2016, 11, e0160192.	2.5	26
40	A Novel Assay to Measure the Magnitude of the Inducible Viral Reservoir in HIV-infected Individuals. EBioMedicine, 2015, 2, 874-883.	6.1	242
41	Longitudinal Genetic Characterization Reveals That Cell Proliferation Maintains a Persistent HIV Type 1 DNA Pool During Effective HIV Therapy. Journal of Infectious Diseases, 2015, 212, 596-607.	4.0	138
42	Innate Immune Activity Correlates with CD4 T Cell-Associated HIV-1 DNA Decline during Latency-Reversing Treatment with Panobinostat. Journal of Virology, 2015, 89, 10176-10189.	3.4	89
43	Effect of ipilimumab on the HIV reservoir in an HIV-infected individual with metastatic melanoma. Aids, 2015, 29, 504-506.	2.2	127
44	A Randomized Open-Label Study of 3- Versus 5-Drug Combination Antiretroviral Therapy in Newly HIV-1–Infected Individuals. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 66, 140-147.	2.1	69
45	Activation of HIV Transcription with Short-Course Vorinostat in HIV-Infected Patients on Suppressive Antiretroviral Therapy. PLoS Pathogens, 2014, 10, e1004473.	4.7	437
46	Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. Aids, 2014, 28, 2251-2258.	2.2	125
47	An Example of Genetically Distinct HIV Type 1 Variants in Cerebrospinal Fluid and Plasma During Suppressive Therapy. Journal of Infectious Diseases, 2014, 209, 1618-1622.	4.0	47
48	Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase $1/2$, single group, clinical trial. Lancet HIV, the, 2014, 1, e13-e21.	4.7	542
49	CD4+ and CD8+ T Cell Activation Are Associated with HIV DNA in Resting CD4+ T Cells. PLoS ONE, 2014, 9, e110731.	2.5	88
50	The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4987-96.	7.1	260
51	Single Cell Analysis of Lymph Node Tissue from HIV-1 Infected Patients Reveals that the Majority of CD4+ T-cells Contain One HIV-1 DNA Molecule. PLoS Pathogens, 2013, 9, e1003432.	4.7	110
52	Challenges in Detecting HIV Persistence during Potentially Curative Interventions: A Study of the Berlin Patient. PLoS Pathogens, 2013, 9, e1003347.	4.7	244
53	Prospective Antiretroviral Treatment of Asymptomatic, HIV-1 Infected Controllers. PLoS Pathogens, 2013, 9, e1003691.	4.7	94
54	Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies. PLoS Pathogens, 2013, 9, e1003174.	4.7	524

#	Article	IF	CITATIONS
55	Advances in detection and monitoring of plasma viremia in HIV-infected individuals receiving antiretroviral therapy. Current Opinion in HIV and AIDS, 2013, 8, 87-92.	3.8	25
56	The immunologic effects of maraviroc intensification in treated HIV-infected individuals with incomplete CD4+ T-cell recovery: a randomized trial. Blood, 2013, 121, 4635-4646.	1.4	117
57	HIV Populations Are Large and Accumulate High Genetic Diversity in a Nonlinear Fashion. Journal of Virology, 2013, 87, 10313-10323.	3.4	109
58	Single-copy assay quantification of HIV-1 RNA in paired cerebrospinal fluid and plasma samples from elite controllers. Aids, 2013, 27, 1145-1149.	2.2	19
59	Treatment Intensification with Raltegravir in Subjects with Sustained HIV-1 Viraemia Suppression: A Randomized 48-Week Study. Antiviral Therapy, 2012, 17, 355-364.	1.0	108
60	Short-Course Combivir after Single-Dose Nevirapine Reduces but Does Not Eliminate the Emergence of Nevirapine Resistance in Women. Antiviral Therapy, 2012, 17, 327-336.	1.0	10
61	Hematopoietic Precursor Cells Isolated From Patients on Long-term Suppressive HIV Therapy Did Not Contain HIV-1 DNA. Journal of Infectious Diseases, 2012, 206, 28-34.	4.0	83
62	Predictors of residual viremia in patients on long-term suppressive antiretroviral therapy. Antiviral Therapy, 2012, 18, 39-43.	1.0	20
63	A Randomized Controlled Trial Assessing the Effects of Raltegravir Intensification on Endothelial Function in Treated HIV Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2012, 61, 317-325.	2.1	36
64	Towards an HIV cure: a global scientific strategy. Nature Reviews Immunology, 2012, 12, 607-614.	22.7	485
65	A Randomized, Controlled Trial of Raltegravir Intensification in Antiretroviral-treated, HIV-infected Patients with a Suboptimal CD4+ T Cell Response. Journal of Infectious Diseases, 2011, 203, 960-968.	4.0	176
66	Genetic Diversity of Simian Immunodeficiency Virus Encoding HIV-1 Reverse Transcriptase Persists in Macaques despite Antiretroviral Therapy. Journal of Virology, 2011, 85, 1067-1076.	3.4	39
67	Raltegravir Treatment Intensification Does Not Alter Cerebrospinal Fluid HIV-1 Infection or Immunoactivation in Subjects on Suppressive Therapy. Journal of Infectious Diseases, 2011, 204, 1936-1945.	4.0	67
68	Intensification of Antiretroviral Therapy with a CCR5 Antagonist in Patients with Chronic HIV-1 Infection: Effect on T Cells Latently Infected. PLoS ONE, 2011, 6, e27864.	2.5	84
69	Can HIV infection be eradicated through use of potent antiviral agents?. Current Opinion in Infectious Diseases, 2010, 23, 628-632.	3.1	17
70	Comparison of standard PCR/cloning to single genome sequencing for analysis of HIV-1 populations. Journal of Virological Methods, 2010, 168, 114-120.	2.1	58
71	HIV reservoirs, latency, and reactivation: Prospects for eradication. Antiviral Research, 2010, 85, 286-294.	4.1	100
72	HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nature Medicine, 2010, 16, 460-465.	30.7	500

#	Article	IF	CITATIONS
73	Low Frequency Nonnucleoside Reverseâ€Transcriptase Inhibitor–Resistant Variants Contribute to Failure of Efavirenzâ€Containing Regimens in Treatmentâ€Experienced Patients. Journal of Infectious Diseases, 2010, 201, 100126095936095-000.	4.0	84
74	The Effect of Raltegravir Intensification on Low-level Residual Viremia in HIV-Infected Patients on Antiretroviral Therapy: A Randomized Controlled Trial. PLoS Medicine, 2010, 7, e1000321.	8.4	258
75	Regimen Simplification to Atazanavirâ€Ritonavir Alone as Maintenance Antiretroviral Therapy: Final 48â€Week Clinical and Virologic Outcomes. Journal of Infectious Diseases, 2009, 199, 866-871.	4.0	52
76	Persistent Lowâ€Level Viremia in HIVâ€1 Elite Controllers and Relationship to Immunologic Parameters. Journal of Infectious Diseases, 2009, 200, 984-990.	4.0	181
77	Switch from enfuvirtide to raltegravir in virologically suppressed HIV-1 infected patients: Effects on level of residual viremia and quality of life. Journal of Clinical Virology, 2009, 46, 305-308.	3.1	24
78	HIV-1 Can Persist in Aged Memory CD4+ T Lymphocytes With Minimal Signs of Evolution After 8.3 Years of Effective Highly Active Antiretroviral Therapy. Journal of Acquired Immune Deficiency Syndromes (1999), 2009, 50, 345-353.	2.1	27
79	Lytic Granule Loading of CD8+ T Cells Is Required for HIV-Infected Cell Elimination Associated with Immune Control. Immunity, 2008, 29, 1009-1021.	14.3	500
80	Detection of Nonnucleoside Reverseâ€Transcriptase Inhibitor–Resistant HIVâ€1 after Discontinuation of Virologically Suppressive Antiretroviral Therapy. Clinical Infectious Diseases, 2008, 47, 421-424.	5.8	31
81	Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3879-3884.	7.1	577
82	Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells. Aids, 2008, 22, 1131-1135.	2.2	172
83	Frequent polymorphism at drug resistance sites in HIV-1 protease and reverse transcriptase. Aids, 2008, 22, 497-501.	2.2	72
84	Suppression of Viremia and Evolution of Human Immunodeficiency Virus Type 1 Drug Resistance in a Macaque Model for Antiretroviral Therapy. Journal of Virology, 2007, 81, 12145-12155.	3.4	51
85	ART Suppresses Plasma HIV-1 RNA to a Stable Set Point Predicted by Pretherapy Viremia. PLoS Pathogens, 2007, 3, e46.	4.7	296
86	Mutations in the connection domain of HIV-1 reverse transcriptase increase 3'-azido-3'-deoxythymidine resistance. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 317-322.	7.1	126
87	Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nature Immunology, 2007, 8, 1246-1254.	14.5	485
88	Selection and persistence of non-nucleoside reverse transcriptase inhibitor-resistant HIV-1 in patients starting and stopping non-nucleoside therapy. Aids, 2006, 20, 701-710.	2.2	91
89	Blinded, Multicenter Comparison of Methods To Detect a Drug-Resistant Mutant of Human Immunodeficiency Virus Type 1 at Low Frequency. Journal of Clinical Microbiology, 2006, 44, 2612-2614.	3.9	104
90	Multiple, Linked Human Immunodeficiency Virus Type 1 Drug Resistance Mutations in Treatment-Experienced Patients Are Missed by Standard Genotype Analysis. Journal of Clinical Microbiology, 2005, 43, 406-413.	3.9	457

#	Article	IF	CITATIONS
91	Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication: Balance between RNase H activity and nucleotide excision. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2093-2098.	7.1	121
92	Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet, The, 2005, 366, 549-555.	13.7	502
93	A Proofâ€ofâ€Concept Study of Shortâ€Cycle Intermittent Antiretroviral Therapy with a Onceâ€Daily Regimen of Didanosine, Lamivudine, and Efavirenz for the Treatment of Chronic HIV Infection. Journal of Infectious Diseases, 2004, 189, 1974-1982.	4.0	55
94	In Vitro Characterization of a Simian Immunodeficiency Virus-Human Immunodeficiency Virus (HIV) Chimera Expressing HIV Type 1 Reverse Transcriptase To Study Antiviral Resistance in Pigtail Macaques. Journal of Virology, 2004, 78, 13553-13561.	3.4	69
95	Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nature Structural and Molecular Biology, 2004, 11, 435-442.	8.2	560
96	HIV-1 protease variants from 100-fold drug resistant clinical isolates: expression, purification, and crystallization. Protein Expression and Purification, 2003, 28, 165-172.	1.3	21
97	New Real-Time Reverse Transcriptase-Initiated PCR Assay with Single-Copy Sensitivity for Human Immunodeficiency Virus Type 1 RNA in Plasma. Journal of Clinical Microbiology, 2003, 41, 4531-4536.	3.9	551
98	Tenofovir, Adefovir, and Zidovudine Susceptibilities of Primary Human Immunodeficiency Virus Type 1 Isolates with Non-B Subtypes or Nucleoside Resistance. AIDS Research and Human Retroviruses, 2001, 17, 1167-1173.	1.1	40
99	Highly drug-resistant HIV-1 clinical isolates are cross-resistant to many antiretroviral compounds in current clinical development. Aids, 1999, 13, 611-667.	2.2	109
100	Drug Susceptibility of Subtypes A, B, C, D, and E Human Immunodeficiency Virus Type 1 Primary Isolates. AIDS Research and Human Retroviruses, 1998, 14, 157-162.	1.1	97