Dirk M Zajonc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1060228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Characterization of the Native (Non-Linked) CD160–HVEM Protein Complex Revealed by Initial Crystallographic Analysis. Crystals, 2021, 11, 820.	2.2	0
2	Unconventional Peptide Presentation by Classical MHC Class I and Implications for T and NK Cell Activation. International Journal of Molecular Sciences, 2020, 21, 7561.	4.1	6
3	A molecular switch in mouse CD1d modulates natural killer T cell activation by α-galactosylsphingamides. Journal of Biological Chemistry, 2019, 294, 14345-14356.	3.4	1
4	Structural basis of NKT cell inhibition using the T-cell receptor-blocking anti-CD1d antibody 1B1. Journal of Biological Chemistry, 2019, 294, 12947-12956.	3.4	0
5	Structure-Function Implications of the Ability of Monoclonal Antibodies Against α-Galactosylceramide-CD1d Complex to Recognize β-Mannosylceramide Presentation by CD1d. Frontiers in Immunology, 2019, 10, 2355.	4.8	5
6	Catching a complex for optimal signaling. Journal of Biological Chemistry, 2019, 294, 13887-13888.	3.4	1
7	Structure of human cytomegalovirus UL144, an HVEM orthologue, bound to the B and T cell lymphocyte attenuator. Journal of Biological Chemistry, 2019, 294, 10519-10529.	3.4	15
8	Control of CD1d-restricted antigen presentation and inflammation by sphingomyelin. Nature Immunology, 2019, 20, 1644-1655.	14.5	35
9	An in silico—in vitro Pipeline Identifying an HLA-A*02:01+ KRAS G12V+ Spliced Epitope Candidate for a Broad Tumor-Immune Response in Cancer Patients. Frontiers in Immunology, 2019, 10, 2572.	4.8	38
10	4"â€Oâ€Alkylated αâ€Galactosylceramide Analogues as <i>i</i> NKTâ€Cell Antigens: Synthetic, Biological, ar Structural Studies. ChemMedChem, 2019, 14, 147-168.	d _{3.2}	14
11	Crystal structure of the m4-1BB/4-1BBL complex reveals an unusual dimeric ligand that undergoes structural changes upon 4-1BB receptor binding. Journal of Biological Chemistry, 2019, 294, 1831-1845.	3.4	18
12	High-Affinity Bent β2-Integrin Molecules in Arresting Neutrophils Face Each Other through Binding to ICAMs In cis. Cell Reports, 2019, 26, 119-130.e5.	6.4	46
13	Selfâ€glycerophospholipids activate murine phospholipidâ€reactive TÂcells and inhibit iNKTÂcell activation by competing with ligands for CD1d loading. European Journal of Immunology, 2019, 49, 242-254.	2.9	7
14	Restriction of Human Cytomegalovirus Infection by Galectin-9. Journal of Virology, 2019, 93, .	3.4	18
15	Evolution of differential 4â€1BB signaling in Human and Murine immune system. FASEB Journal, 2019, 33, 461.3.	0.5	2
16	A ligand-specific blockade of the integrin Mac-1 selectively targets pathologic inflammation while maintaining protective host-defense. Nature Communications, 2018, 9, 525.	12.8	72
17	Crystal structures of the human 4-1BB receptor bound to its ligand 4-1BBL reveal covalent receptor dimerization as a potential signaling amplifier. Journal of Biological Chemistry, 2018, 293, 9958-9969.	3.4	27

18 CD1c caves in on lipids. Nature Immunology, 2018, 19, 322-324.

14.5 1

#	Article	IF	CITATIONS
19	Characterization of murine antibody responses to vaccinia virus envelope protein A14 reveals an immunodominant antigen lacking of effective neutralization targets. Virology, 2018, 518, 284-292.	2.4	2
20	Crystal structure of murine 4-1BB and its interaction with 4-1BBL support a role for galectin-9 in 4-1BB signaling. Journal of Biological Chemistry, 2018, 293, 1317-1329.	3.4	43
21	Structure–function characterization of three human antibodies targeting the vaccinia virus adhesion molecule D8. Journal of Biological Chemistry, 2018, 293, 390-401.	3.4	19
22	Unconventional Peptide Presentation by Major Histocompatibility Complex (MHC) Class I Allele HLA-A*02:01. Journal of Biological Chemistry, 2017, 292, 5262-5270.	3.4	57
23	Autoreactivity to Sulfatide by Human Invariant NKT Cells. Journal of Immunology, 2017, 199, 97-106.	0.8	19
24	Regulatory T Cell–Mediated Suppression of Inflammation Induced by DR3 Signaling Is Dependent on Galectin-9. Journal of Immunology, 2017, 199, 2721-2728.	0.8	60
25	Galactosylsphingamides: new α-GalCer analogues to probe the F'-pocket of CD1d. Scientific Reports, 2017, 7, 4276.	3.3	10
26	Crystal structure of Qa-1a with bound Qa-1 determinant modifier peptide. PLoS ONE, 2017, 12, e0182296.	2.5	6
27	The CD1 family: serving lipid antigens to T cells since the Mesozoic era. Immunogenetics, 2016, 68, 561-576.	2.4	21
28	Linear Epitopes in Vaccinia Virus A27 Are Targets of Protective Antibodies Induced by Vaccination against Smallpox. Journal of Virology, 2016, 90, 4334-4345.	3.4	23
29	Structure of an α-Helical Peptide and Lipopeptide Bound to the Nonclassical Major Histocompatibility Complex (MHC) Class I Molecule CD1d*. Journal of Biological Chemistry, 2016, 291, 10677-10683.	3.4	10
30	CD1, MR1, NKT, and MAIT: evolution and origins of non-peptidic antigen recognition by T lymphocytes. Immunogenetics, 2016, 68, 489-490.	2.4	13
31	Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove. ELife, 2016, 5, .	6.0	88
32	Recognition of Microbial Glycolipids by Natural Killer T Cells. Frontiers in Immunology, 2015, 6, 400.	4.8	58
33	Synthesis of C-5″ and C-6″-modified α-GalCer analogues as iNKT-cell agonists. Bioorganic and Medicinal Chemistry, 2015, 23, 3175-3182.	3.0	14
34	A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN-Î ³ Production. Journal of Immunology, 2015, 195, 924-933.	0.8	28
35	Lipid and Carbohydrate Modifications of α-Galactosylceramide Differently Influence Mouse and Human Type I Natural Killer T Cell Activation. Journal of Biological Chemistry, 2015, 290, 17206-17217.	3.4	15
36	Structural and Functional Characterization of Anti-A33 Antibodies Reveal a Potent Cross-Species Orthopoxviruses Neutralizer. PLoS Pathogens, 2015, 11, e1005148.	4.7	32

#	Article	IF	CITATIONS
37	The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 851-862.	2.5	5
38	Recognition of Lysophosphatidylcholine by Type II NKT Cells and Protection from an Inflammatory Liver Disease. Journal of Immunology, 2014, 193, 4580-4589.	0.8	62
39	Potent Neutralization of Vaccinia Virus by Divergent Murine Antibodies Targeting a Common Site of Vulnerability in L1 Protein. Journal of Virology, 2014, 88, 11339-11355.	3.4	40
40	A γδT ell glimpse of glycolipids. Immunology and Cell Biology, 2014, 92, 99-100.	2.3	1
41	Murine Anti-vaccinia Virus D8 Antibodies Target Different Epitopes and Differ in Their Ability to Block D8 Binding to CS-E. PLoS Pathogens, 2014, 10, e1004495.	4.7	17
42	Using a Combined Computational-Experimental Approach to Predict Antibody-Specific B Cell Epitopes. Structure, 2014, 22, 646-657.	3.3	63
43	The Identification of the Endogenous Ligands of Natural Killer T Cells Reveals the Presence of Mammalian α-Linked Glycosylceramides. Immunity, 2014, 41, 543-554.	14.3	207
44	Galectin-9 controls the therapeutic activity of 4-1BB–targeting antibodies. Journal of Experimental Medicine, 2014, 211, 1433-1448.	8.5	116
45	Human Cytomegalovirus Glycoprotein UL141 Targets the TRAIL Death Receptors to Thwart Host Innate Antiviral Defenses. Cell Host and Microbe, 2013, 13, 324-335.	11.0	86
46	Structure of Human Cytomegalovirus UL141 Binding to TRAIL-R2 Reveals Novel, Non-canonical Death Receptor Interactions. PLoS Pathogens, 2013, 9, e1003224.	4.7	36
47	The bovine CD1D gene has an unusual gene structure and is expressed but cannot present α-galactosylceramide with a C26 fatty acid. International Immunology, 2013, 25, 91-98.	4.0	16
48	Enhanced TCR Footprint by a Novel Glycolipid Increases NKT-Dependent Tumor Protection. Journal of Immunology, 2013, 191, 2916-2925.	0.8	37
49	Helicobacter pylori Cholesteryl α-Glucosides Contribute to Its Pathogenicity and Immune Response by Natural Killer T Cells. PLoS ONE, 2013, 8, e78191.	2.5	56
50	Structural and Biochemical Characterization of the Vaccinia Virus Envelope Protein D8 and Its Recognition by the Antibody LA5. Journal of Virology, 2012, 86, 8050-8058.	3.4	33
51	Structural and Functional Characterization of a Novel Nonglycosidic Type I NKT Agonist with Immunomodulatory Properties. Journal of Immunology, 2012, 188, 2254-2265.	0.8	24
52	Structural Basis for the Recognition of C20:2-αGalCer by the Invariant Natural Killer T Cell Receptor-like Antibody L363*. Journal of Biological Chemistry, 2012, 287, 1269-1278.	3.4	29
53	Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nature Immunology, 2012, 13, 851-856.	14.5	123
54	Molecular basis of lipid antigen presentation by <scp>CD</scp> 1d and recognition by natural killer T cells. Immunological Reviews, 2012, 250, 167-179.	6.0	72

#	Article	IF	CITATIONS
55	Crystal Structures of Bovine CD1d Reveal Altered αGalCer Presentation and a Restricted A' Pocket Unable to Bind Long-Chain Glycolipids. PLoS ONE, 2012, 7, e47989.	2.5	14
56	NKT Cell Ligand Recognition Logic: Molecular Basis for a Synaptic Duet and Transmission of Inflammatory Effectors. Journal of Immunology, 2011, 187, 1081-1089.	0.8	40
57	Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nature Immunology, 2011, 12, 966-974.	14.5	295
58	Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis. EMBO Journal, 2011, 30, 2294-2305.	7.8	98
59	Glycolipids that Elicit IFN-Î ³ -Biased Responses from Natural Killer T Cells. Chemistry and Biology, 2011, 18, 1620-1630.	6.0	37
60	Galactose modified iNKT cell agonists stabilised by a novel structural modification of CD1d lead to marked Th1 polarisation in vivo. Annals of the Rheumatic Diseases, 2011, 70, A53-A53.	0.9	0
61	Cutting Edge: Structural Basis for the Recognition of β-Linked Glycolipid Antigens by Invariant NKT Cells. Journal of Immunology, 2011, 187, 2079-2083.	0.8	57
62	Cardiolipin Binds to CD1d and Stimulates CD1d-Restricted γδT Cells in the Normal Murine Repertoire. Journal of Immunology, 2011, 186, 4771-4781.	0.8	97
63	Unique Interplay between Sugar and Lipid in Determining the Antigenic Potency of Bacterial Antigens for NKT Cells. PLoS Biology, 2011, 9, e1001189.	5.6	43
64	Structural Basis for Lipid-Antigen Recognition in Avian Immunity. Journal of Immunology, 2010, 184, 2504-2511.	0.8	25
65	Crystal Structure of Bovine CD1b3 with Endogenously Bound Ligands. Journal of Immunology, 2010, 185, 376-386.	0.8	15
66	Lipid binding orientation within CD1d affects recognition of <i>Borrelia burgorferi</i> antigens by NKT cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1535-1540.	7.1	91
67	Mechanisms for Glycolipid Antigen-Driven Cytokine Polarization by Vα14 <i>i</i> NKT Cells. Journal of Immunology, 2010, 184, 141-153.	0.8	108
68	The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. Journal of Experimental Medicine, 2010, 207, 2383-2393.	8.5	78
69	Carbohydrate specificity of the recognition of diverse glycolipids by natural killer T cells. Immunological Reviews, 2009, 230, 188-200.	6.0	38
70	Crystal Structures of Mouse CD1d-iGb3 Complex and its Cognate Vα14ÂT Cell Receptor Suggest a Model for Dual Recognition of Foreign and Self Glycolipids. Journal of Molecular Biology, 2008, 377, 1104-1116.	4.2	94
71	The crystal structure of avian CD1 reveals a smaller, more primordial antigen-binding pocket compared to mammalian CD1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17925-17930.	7.1	30
72	CD1 mediated T cell recognition of glycolipids. Current Opinion in Structural Biology, 2007, 17, 521-529.	5.7	52

#	Article	IF	CITATIONS
73	Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nature Immunology, 2006, 7, 978-986.	14.5	567
74	Structural Characterization of Mycobacterial Phosphatidylinositol Mannoside Binding to Mouse CD1d. Journal of Immunology, 2006, 177, 4577-4583.	0.8	72
75	Design of natural killer T cell activators: Structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3972-3977.	7.1	134
76	CD1 assembly and the formation of CD1–antigen complexes. Current Opinion in Immunology, 2005, 17, 88-94.	5.5	32
77	T-cell activation by lipopeptide antigens. Current Opinion in Immunology, 2005, 17, 222-229.	5.5	22
78	Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nature Immunology, 2005, 6, 810-818.	14.5	288
79	Anatomy of CD1–lipid antigen complexes. Nature Reviews Immunology, 2005, 5, 387-399.	22.7	165
80	Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. Journal of Experimental Medicine, 2005, 202, 1517-1526.	8.5	187
81	Molecular Mechanism of Lipopeptide Presentation by CD1a. Immunity, 2005, 22, 209-219.	14.3	122
82	T Cell Activation by Lipopeptide Antigens. Science, 2004, 303, 527-531.	12.6	255
83	Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Ã Nature Immunology, 2003, 4, 808-815.	14.5	218