Fred W Perrino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10599694/publications.pdf

Version: 2024-02-01

186265 197818 3,501 50 28 49 citations h-index g-index papers 51 51 51 3300 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeting Bcl6 in the TREX1 D18N murine model ameliorates autoimmunity by modulating T follicular helper cells and Germinal center B cells. European Journal of Immunology, 2022, , .	2.9	5
2	TREX1 as a Novel Immunotherapeutic Target. Frontiers in Immunology, 2021, 12, 660184.	4.8	36
3	T Cells Produce IFN-α in the TREX1 D18N Model of Lupus-like Autoimmunity. Journal of Immunology, 2020, 204, 348-359.	0.8	13
4	TREX1 – Apex predator of cytosolic DNA metabolism. DNA Repair, 2020, 94, 102894.	2.8	25
5	Measuring TREX1 and TREX2 exonuclease activities. Methods in Enzymology, 2019, 625, 109-133.	1.0	16
6	TREX1 D18N mice fail to process erythroblast DNA resulting in inflammation and dysfunctional erythropoiesis. Autoimmunity, 2018, 51, 333-344.	2.6	14
7	Identification of Inhibitors of the dNTP Triphosphohydrolase SAMHD1 Using a Novel and Direct High-Throughput Assay. Biochemistry, 2018, 57, 6624-6636.	2.5	12
8	The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch. Antioxidants and Redox Signaling, 2017, 27, 1317-1331.	5.4	37
9	DNase-active TREX1 frame-shift mutants induce serologic autoimmunity in mice. Journal of Autoimmunity, 2017, 81, 13-23.	6.5	27
10	The Exonuclease Trex2 Shapes PsoriaticÂPhenotype. Journal of Investigative Dermatology, 2016, 136, 2345-2355.	0.7	15
11	Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5117-5122.	7.1	127
12	The Multidimensional Nature of Antiviral Innate Immunity. Cell Host and Microbe, 2015, 17, 423-425.	11.0	19
13	Multifaceted role of TREX2 in the skin defense against UV-induced skin carcinogenesis. Oncotarget, 2015, 6, 22375-22396.	1.8	14
14	The Arg-62 Residues of the TREX1 Exonuclease Act Across the Dimer Interface Contributing to Catalysis in the Opposing Protomers. Journal of Biological Chemistry, 2014, 289, 11556-11565.	3.4	13
15	The TREX1 C-terminal Region Controls Cellular Localization through Ubiquitination. Journal of Biological Chemistry, 2013, 288, 28881-28892.	3.4	30
16	Synonymous Mutations in <i>RNASEH2A</i> Create Cryptic Splice Sites Impairing RNase H2 Enzyme Function in Aicardi-GoutiĀ'res Syndrome. Human Mutation, 2013, 34, 1066-1070.	2.5	16
17	Defects in DNA degradation revealed in crystal structures of TREX1 exonuclease mutations linked to autoimmune disease. DNA Repair, 2012, 11, 65-73.	2.8	25
18	Bypass of N2-ethylguanine by human DNA polymerase κâ~†. DNA Repair, 2011, 10, 56-64.	2.8	10

#	Article	IF	CITATIONS
19	The TREX1 Exonuclease R114H Mutation in Aicardi-Goutià res Syndrome and Lupus Reveals Dimeric Structure Requirements for DNA Degradation Activity. Journal of Biological Chemistry, 2011, 286, 40246-40254.	3.4	39
20	Functional Consequences of the RNase H2A Subunit Mutations That Cause Aicardi-Goutières Syndrome. Journal of Biological Chemistry, 2011, 286, 16984-16991.	3.4	29
21	Dominant Mutations of the TREX1 Exonuclease Gene in Lupus and Aicardi-GoutiÃ'res Syndrome. Journal of Biological Chemistry, 2011, 286, 32373-32382.	3.4	62
22	Aicardi-Goutià res Syndrome Gene and HIV-1 Restriction Factor SAMHD1 Is a dGTP-regulated Deoxynucleotide Triphosphohydrolase. Journal of Biological Chemistry, 2011, 286, 43596-43600.	3.4	305
23	The Structure of the Mammalian RNase H2 Complex Provides Insight into RNA·DNA Hybrid Processing to Prevent Immune Dysfunction. Journal of Biological Chemistry, 2010, 285, 3617-3624.	3.4	50
24	DNA binding induces active site conformational change in the human TREX2 3'-exonuclease. Nucleic Acids Research, 2009, 37, 2411-2417.	14.5	15
25	Lesion Bypass of N2-Ethylguanine by Human DNA Polymerase \hat{l}^1 . Journal of Biological Chemistry, 2009, 284, 1732-1740.	3.4	69
26	RNaseH2 mutants that cause Aicardi–Goutieres syndrome are active nucleases. Journal of Molecular Medicine, 2009, 87, 25-30.	3.9	34
27	Cooperative DNA Binding and Communication across the Dimer Interface in the TREX2 3′ → 5′-Exonuclease Journal of Biological Chemistry, 2008, 283, 21441-21452.	² ·3.4	17
28	The TREX1 Double-stranded DNA Degradation Activity Is Defective in Dominant Mutations Associated with Autoimmune Disease. Journal of Biological Chemistry, 2008, 283, 31649-31656.	3.4	113
29	The Crystal Structure of TREX1 Explains the 3′ Nucleotide Specificity and Reveals a Polyproline II Helix for Protein Partnering. Journal of Biological Chemistry, 2007, 282, 10537-10543.	3.4	94
30	Heterozygous Mutations in TREX1 Cause Familial Chilblain Lupus and Dominant Aicardi-Goutières Syndrome. American Journal of Human Genetics, 2007, 80, 811-815.	6.2	339
31	Mutations in the gene encoding the $3\hat{a}\in^2$ - $5\hat{a}\in^2$ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nature Genetics, 2007, 39, 1065-1067.	21.4	590
32	WRN exonuclease activity is blocked by DNA termini harboring 3′ obstructive groups. Mechanisms of Ageing and Development, 2007, 128, 259-266.	4.6	29
33	A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. Journal of Molecular Medicine, 2007, 85, 531-537.	3.9	183
34	Replication of N2-Ethyldeoxyguanosine DNA Adducts in the Human Embryonic Kidney Cell Line 293. Chemical Research in Toxicology, 2006, 19, 960-967.	3.3	35
35	The Exonuclease TREX1 Is in the SET Complex and Acts in Concert with NM23-H1 to Degrade DNA during Granzyme A-Mediated Cell Death. Molecular Cell, 2006, 23, 133-142.	9.7	225
36	Mutagenesis by exocyclic alkylamino purine adducts in Escherichia coli. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 599, 1-10.	1.0	15

#	Article	IF	CITATIONS
37	The Human TREX2 3′ → 5′-Exonuclease Structure Suggests a Mechanism for Efficient Nonprocessive DNA Catalysis. Journal of Biological Chemistry, 2005, 280, 15212-15218.	3.4	50
38	Polymerization Past the N2-Isopropylguanine and the N6-Isopropyladenine DNA Lesions with the Translesion Synthesis DNA Polymerases η and ι and the Replicative DNA Polymerase αâ€. Chemical Research in Toxicology, 2005, 18, 1451-1461.	3.3	10
39	Sequence variants in the 3′→5′ deoxyribonuclease TREX2: identification in a genetic screen and effects on catalysis by the recombinant proteins. Advances in Enzyme Regulation, 2004, 44, 37-49.	2.6	11
40	The N2-Ethylguanine and the O6-Ethyl- and O6-Methylguanine Lesions in DNA: Contrasting Responses from the "Bypass―DNA Polymerase η and the Replicative DNA Polymerase α. Chemical Research in Toxicology, 2003, 16, 1616-1623.	3.3	51
41	Model for the Catalytic Domain of the Proofreading ε Subunit ofEscherichia coliDNA Polymerase III Based on NMR Structural Dataâ€. Biochemistry, 2002, 41, 94-110.	2.5	32
42	Structure and Expression of the TREX1 and TREX2 3′→5′ Exonuclease Genes. Journal of Biological Chemistry, 2001, 276, 14718-14727.	3.4	64
43	Excision of 3′ Termini by the Trex1 and TREX2 3′→5′ Exonucleases. Journal of Biological Chemistry, 2001 276, 17022-17029.	'3.4	129
44	Identification and Expression of the TREX1 and TREX2 cDNA Sequences Encoding Mammalian 3′→5′ Exonucleases. Journal of Biological Chemistry, 1999, 274, 19655-19660.	3.4	227
45	Exonucleases and the incorporation of aranucleotides into DNA. Cell Biochemistry and Biophysics, 1999, 30, 331-352.	1.8	29
46	Two Functional Domains of the Îμ Subunit of DNA Polymerase IIIâ€. Biochemistry, 1999, 38, 16001-16009.	2.5	47
47	Kinetic Mechanism of the 3  → 5  Proofreading Exonuclease of DNA Polymerase III. Analysis by Steady State and Pre-Steady State Methodsâ€. Biochemistry, 1996, 35, 12919-12925.	2.5	39
48	The Effects of Cytosine Arabinoside on RNA-primed DNA Synthesis by DNA Polymerase α-Primase. Journal of Biological Chemistry, 1995, 270, 26664-26669.	3.4	34
49	Proof-reading 3'5' exonucleases isolated from rat liver nuclei. FEBS Journal, 1993, 217, 493-500.	0.2	23
50	Hydrolysis of 3'-terminal mispairs in vitro by the 3'.fwdarw. 5' exonuclease of DNA polymerase.delta. permits subsequent extension by DNA polymerase.alpha Biochemistry, 1990, 29, 5226-5231.	2.5	55