Sayan Sen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10599677/publications.pdf

Version: 2024-02-01

		101543	64796
108	6,522	36	79
papers	citations	h-index	g-index
113	113	113	5376
all docs	docs citations	times ranked	citing authors

#	Article	lF	Citations
1	Performance of quantitative flow ratio in patients with aortic stenosis undergoing transcatheter aortic valve implantation. Catheterization and Cardiovascular Interventions, 2022, 99, 68-73.	1.7	15
2	Phasic flow patterns of right versus left coronary arteries in patients undergoing clinical physiological assessment. EuroIntervention, 2022, 17, 1260-1270.	3.2	1
3	A double-blind randomised placebo-controlled trial of percutaneous coronary intervention for the relief of stable angina without antianginal medications: design and rationale of the ORBITA-2 trial. EuroIntervention, 2022, 17, 1490-1497.	3.2	7
4	Aortic Valve Calcium Score Is Associated With Acute Stroke in Transcatheter Aortic Valve Replacement Patients., 2022, 1, 100349.		3
5	Cardiopulmonary exercise testing and efficacy of percutaneous coronary intervention: a substudy of the ORBITA trial. European Heart Journal, 2022, 43, 3132-3145.	2.2	12
6	Prevalence, predictors, and outcomes of patient prosthesis mismatch in women undergoing <scp>TAVI</scp> for severe aortic stenosis: Insights from the <scp>WINâ€₹AVI</scp> registry. Catheterization and Cardiovascular Interventions, 2021, 97, 516-526.	1.7	17
7	Achieving optimal adherence to medical therapy by telehealth: Findings from the ORBITA medication adherence subâ€study. Pharmacology Research and Perspectives, 2021, 9, e00710.	2.4	3
8	Achieving Optimal Medical Therapy: Insights From the ORBITA Trial. Journal of the American Heart Association, 2021, 10, e017381.	3.7	11
9	Reusable snorkel masks adapted as particulate respirators. PLoS ONE, 2021, 16, e0249201.	2.5	3
10	Placebo-Controlled Efficacy of Percutaneous Coronary Intervention for Focal and Diffuse Patterns of Stable Coronary Artery Disease. Circulation: Cardiovascular Interventions, 2021, 14, e009891.	3.9	6
11	Comparing invasive hemodynamic responses in adenosine hyperemia versus physical exercise stress in chronic coronary syndromes. International Journal of Cardiology, 2021, 342, 7-14.	1.7	1
12	Facilitating rightâ€sided axillary artery access for transcatheter aortic valve replacement using the Edwards Sapien 3 and ultra valves: Technical considerations. Catheterization and Cardiovascular Interventions, 2020, 96, E747-E754.	1.7	2
13	Rescue Valve-in-Valve-in-Valve TAVR for Acute Transvalvular Aortic Regurgitation. Cardiovascular Revascularization Medicine, 2020, 21, 11-13.	0.8	1
14	Optimal management of acute coronary syndromes in the era of COVID-19. Heart, 2020, 106, 1609-1616.	2.9	10
15	Complete Revascularization by Percutaneous Coronary Intervention for Patients With STâ€Segment–Elevation Myocardial Infarction and Multivessel Coronary Artery Disease: An Updated Metaâ€Analysis of Randomized Trials. Journal of the American Heart Association, 2020, 9, e015263.	3.7	31
16	Comparison of the self-expanding Evolut-PRO transcatheter aortic valve to its predecessor Evolut-R in the real world multicenter ATLAS registry. International Journal of Cardiology, 2020, 310, 120-125.	1.7	23
17	How Do Fractional Flow Reserve, Whole-Cycle PdPa, and Instantaneous Wave-Free Ratio Correlate With Exercise Coronary Flow Velocity During Exercise-Induced Angina?. Circulation: Cardiovascular Interventions, 2020, 13, e008460.	3.9	1
18	Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL) Tj ETQq0 1444-1451.	0 0 rgBT /0 13.7	Overlock 10 Tf 351

1444-1451.

#	Article	IF	CITATIONS
19	Objective Identification of Intermediate Lesions Inducing Myocardial Ischemia Using Sequential Intracoronary Pressure and Flow Measurements. Journal of the American Heart Association, 2020, 9, e015559.	3.7	5
20	Balloon-Assisted Tracking (BAT) of an Uncrossable Aortic Valve During Transcatheter Aortic Valve Implantation. Cardiovascular Revascularization Medicine, 2020, 21, 33-35.	0.8	1
21	Longâ€Term Effects of Transcatheter Aortic Valve Implantation on Coronary Hemodynamics in Patients With Concomitant Coronary Artery Disease and Severe Aortic Stenosis. Journal of the American Heart Association, 2020, 9, e015133.	3.7	33
22	Effects of Percutaneous Coronary Intervention on Death and Myocardial Infarction Stratified by Stable and Unstable Coronary Artery Disease. Circulation: Cardiovascular Quality and Outcomes, 2020, 13, e006363.	2.2	99
23	Safety of Revascularization Deferral of Left Main Stenosis Based on Instantaneous Wave-FreeÂRatio Evaluation. JACC: Cardiovascular Interventions, 2020, 13, 1655-1664.	2.9	30
24	Comparison of Major Adverse Cardiac Events Between Instantaneous Wave-Free Ratio and Fractional Flow Reserve–Guided Strategy in Patients With or Without Type 2 Diabetes. JAMA Cardiology, 2019, 4, 857.	6.1	25
25	Sex Differences in Instantaneous Wave-Free Ratio or Fractional Flow Reserve–Guided Revascularization Strategy. JACC: Cardiovascular Interventions, 2019, 12, 2035-2046.	2.9	26
26	Dobutamine Stress Echocardiography Ischemia as a Predictor of the Placebo-Controlled Efficacy of Percutaneous Coronary Intervention in Stable Coronary Artery Disease. Circulation, 2019, 140, 1971-1980.	1.6	46
27	Artificial Intelligence for Aortic Pressure Waveform Analysis During CoronaryÂAngiography. JACC: Cardiovascular Interventions, 2019, 12, 2093-2101.	2.9	24
28	Clinical Events After Deferral of LADÂRevascularization Following PhysiologicalÂCoronaryÂAssessment. Journal of the American College of Cardiology, 2019, 73, 444-453.	2.8	35
29	Physiological Pattern of Disease Assessed by Pressure-Wire Pullback Has an Influence on Fractional Flow Reserve/Instantaneous Wave-Free Ratio Discordance. Circulation: Cardiovascular Interventions, 2019, 12, e007494.	3.9	47
30	Association Between Physiological Stenosis Severity and Angina-Limited Exercise Time in Patients With Stable Coronary Artery Disease. JAMA Cardiology, 2019, 4, 569.	6.1	3
31	Diastolic-systolic velocity ratio to detect coronary stenoses under physiological resting conditions: a mechanistic study. Open Heart, 2019, 6, e000968.	2.3	2
32	Fractional flow reserve derived from microcatheters versus standard pressure wires: a stenosis-level meta-analysis. Open Heart, 2019, 6, e000971.	2.3	8
33	Double Utility of a Buddy Wire inÂTransseptal Transcatheter MitralÂIntervention. JACC: Cardiovascular Interventions, 2019, 12, 2555-2557.	2.9	3
34	Determining the Predominant Lesion in Patients With Severe Aortic Stenosis and Coronary Stenoses. Circulation: Cardiovascular Interventions, 2019, 12, e008263.	3.9	20
35	Initial experience of a large, selfâ€expanding, and fully recapturable transcatheter aortic valve: The UK & Ireland Implanters' registry. Catheterization and Cardiovascular Interventions, 2019, 93, 751-757.	1.7	13
36	Transcatheter mitral valve replacement in severe mitral annular calcification and atrial septal defect closure. Cardiovascular Revascularization Medicine, 2019, 20, 194-196.	0.8	0

#	Article	IF	CITATIONS
37	Female-specific survival advantage from transcatheter aortic valve implantation over surgical aortic valve replacement: Meta-analysis of the gender subgroups of randomised controlled trials including 3758 patients. International Journal of Cardiology, 2018, 250, 66-72.	1.7	33
38	Pre-Angioplasty Instantaneous Wave-Free Ratio Pullback Predicts Hemodynamic Outcome In Humans WithÂCoronary Artery Disease. JACC: Cardiovascular Interventions, 2018, 11, 757-767.	2.9	95
39	Optimal antiplatelet strategy after transcatheter aortic valve implantation: a meta-analysis. Open Heart, 2018, 5, e000748.	2.3	34
40	Effects of disease severity distribution on the performance of quantitative diagnostic methods and proposal of a novel â€~V-plot' methodology to display accuracy values. Open Heart, 2018, 5, e000663.	2.3	1
41	A case report of the clinical effect of chronic total occlusion recanalization on the instantaneous wave-free ratio in the donor artery. European Heart Journal - Case Reports, 2018, 2, 1-4.	0.6	2
42	Patent foramen ovale closure vs. medical therapy for cryptogenic stroke: a meta-analysis of randomized controlled trials. European Heart Journal, 2018, 39, 1638-1649.	2.2	88
43	Successful percutaneous retrieval of a severely kinked and twisted femoral sheath under fluoroscopic guidance during Transcatheter Aortic Valve Implantation. Cardiovascular Revascularization Medicine, 2018, 19, 86-87.	0.8	0
44	Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet, The, 2018, 391, 31-40.	13.7	738
45	Reply to: Assessing the quality of evidence supporting patent foramen ovale closure over medical therapy after cryptogenic stroke. European Heart Journal, 2018, 39, 3620-3620.	2.2	1
46	Fractional Flow Reserve and Instantaneous Wave-Free Ratio as Predictors of the Placebo-Controlled Response to Percutaneous Coronary Intervention in Stable Single-Vessel Coronary Artery Disease. Circulation, 2018, 138, 1780-1792.	1.6	88
47	Survival outcomes post percutaneous coronary intervention: Why the hype about stent type? Lessons from a healthcare system in India. PLoS ONE, 2018, 13, e0196830.	2.5	8
48	Regression of left ventricular hypertrophy provides an additive physiological benefit following treatment of aortic stenosis: Insights from serial coronary wave intensity analysis. Acta Physiologica, 2018, 224, e13109.	3.8	6
49	Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes. JACC: Cardiovascular Interventions, 2018, 11, 1437-1449.	2.9	111
50	Coronary Hemodynamics in Patients WithÂSevere Aortic Stenosis and Coronary Artery Disease Undergoing Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 2018, 11, 2019-2031.	2.9	88
51	Impact of Percutaneous Revascularization on ExerciseÂHemodynamics in PatientsÂWithÂStable Coronary Disease. Journal of the American College of Cardiology, 2018, 72, 970-983.	2.8	21
52	Assessing coronary disease in patients with severe aortic stenosis: the need for a †valid†gold standard for validation studies?. EuroIntervention, 2018, 13, 1499-1502.	3.2	3
53	Diagnostic Accuracy of Computed Tomography–Derived Fractional Flow Reserve. JAMA Cardiology, 2017, 2, 803.	6.1	166
54	Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI. New England Journal of Medicine, 2017, 376, 1824-1834.	27.0	742

#	Article	IF	Citations
55	Management of failing bioprosthesis in elderly patients who have undergone transcatheter aortic valve replacement. Expert Review of Medical Devices, 2017, 14, 763-771.	2.8	4
56	The Evolving Future of InstantaneousÂWave-Free Ratio and Fractional FlowÂReserve. Journal of the American College of Cardiology, 2017, 70, 1379-1402.	2.8	148
57	Fractional Flow Reserve/InstantaneousÂWave-Free Ratio Discordance in Angiographically Intermediate CoronaryÂStenoses. JACC: Cardiovascular Interventions, 2017, 10, 2514-2524.	2.9	104
58	Invasive minimal Microvascular Resistance Is a New Index to Assess Microcirculatory Function Independent of Obstructive Coronary Artery Disease. Journal of the American Heart Association, 2016, 5, .	3.7	21
59	Quantification of the Effect of Pressure Wire Drift on the Diagnostic Performance of Fractional Flow Reserve, Instantaneous Wave-Free Ratio, and Whole-Cycle Pd/Pa. Circulation: Cardiovascular Interventions, 2016, 9, e002988.	3.9	45
60	Resolving the paradox of randomised controlled trials and observational studies comparing multi-vessel angioplasty and culprit only angioplasty at the time of STEMI. International Journal of Cardiology, 2016, 222, 1-8.	1.7	12
61	Over-expansion capacity and stent design model: An update with contemporary DES platforms. International Journal of Cardiology, 2016, 221, 171-179.	1.7	71
62	Transcatheter aortic valve implantation in the young. International Journal of Cardiology, 2016, 203, 626-628.	1.7	1
63	Assessment, treatment, and prognostic implications of CAD in patients undergoing TAVI. Nature Reviews Cardiology, 2016, 13, 276-285.	13.7	37
64	Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H619-H627.	3.2	13
65	Bioresorbable vascular scaffold radial expansion and conformation compared to a metallic platform: insights from in vitro expansion in a coronary artery lesion model. EuroIntervention, 2016, 12, 834-844.	3.2	12
66	Fractional flow reserve and minimum Pd/Pa ratio during intravenous adenosine infusion: very similar but not always the same. EuroIntervention, 2016 , 11 , $1013-1019$.	3.2	17
67	Impact of clinical and procedural factors upon C reactive protein dynamics following transcatheter aortic valve implantation. World Journal of Cardiology, 2016, 8, 425.	1.5	9
68	Simplifying Angioplasty: From Three-Vessel to One-Vessel Disease. , 2016, , 71-76.		0
69	Advances in Coronary Physiology. Circulation Journal, 2015, 79, 1172-1184.	1.6	27
70	A new method of applying randomised control study data to the individual patient: A novel quantitative patient-centred approach to interpreting composite end points. International Journal of Cardiology, 2015, 195, 216-224.	1.7	24
71	Change in Coronary Blood Flow After Percutaneous Coronary Intervention in Relation to Baseline Lesion Physiology. Circulation: Cardiovascular Interventions, 2015, 8, e001715.	3.9	38
72	Demystifying Complex Coronary Hemodynamics in Patients Undergoing Transcatheter Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 2015, 8, e002909.	3.9	4

#	Article	IF	Citations
73	ECG-Independent Calculation of Instantaneous Wave-Free Ratio. JACC: Cardiovascular Interventions, 2015, 8, 2043-2046.	2.9	16
74	The Instantaneous wave-Free Ratio (iFR) pullback: a novel innovation using baseline physiology to optimise coronary angioplasty in tandem lesions. Cardiovascular Revascularization Medicine, 2015, 16, 167-171.	0.8	64
75	Intra-aortic Balloon Pump Therapy for Acute Myocardial Infarction. JAMA Internal Medicine, 2015, 175, 931.	5.1	115
76	Can Resting Indices Obviate the Need for Hyperemia and Promote the Routine Use of Physiologically Guided Revascularization?. Interventional Cardiology Clinics, 2015, 4, 459-469.	0.4	1
77	Tackling the bends in transcatheter aortic valve implantation. International Journal of Cardiology, 2015, 201, 55-57.	1.7	O
78	The ischaemic constellation: an alternative to the ischaemic cascadeâ€"implications for the validation of new ischaemic tests. Open Heart, 2015, 2, e000178.	2.3	15
79	Coronary pressure and flow relationships in humans: phasic analysis of normal and pathological vessels and the implications for stenosis assessment: a report from the Iberian–Dutch–English (IDEAL) collaborators. European Heart Journal, 2015, 37, 2069-2080.	2.2	129
80	Head-to-head comparison of basal stenosis resistance index, instantaneous wave-free ratio, and fractional flow reserve: diagnostic accuracy for stenosis-specific myocardial ischaemia. EuroIntervention, 2015, 11, 914-925.	3.2	62
81	Wave Intensity Analysis in the Human Coronary Circulation in Health and Disease. Current Cardiology Reviews, 2014, 10, 17-23.	1.5	18
82	Pre-Angioplasty Instantaneous Wave-Free Ratio Pullback Provides Virtual Intervention and Predicts Hemodynamic Outcome for SerialÂLesions and Diffuse Coronary ArteryÂDisease. JACC: Cardiovascular Interventions, 2014, 7, 1386-1396.	2.9	107
83	Incomplete Stent Apposition Causes High Shear Flow Disturbances and Delay in Neointimal Coverage as a Function of Strut to Wall Detachment Distance. Circulation: Cardiovascular Interventions, 2014, 7, 180-189.	3.9	178
84	Baseline Instantaneous Wave-Free Ratio as a Pressure-Only Estimation of Underlying Coronary Flow Reserve. Circulation: Cardiovascular Interventions, 2014, 7, 492-502.	3.9	152
85	Impact of stent strut design in metallic stents and biodegradable scaffolds. International Journal of Cardiology, 2014, 177, 800-808.	1.7	136
86	Low Coronary Microcirculatory Resistance Associated With Profound Hypotension During Intravenous Adenosine Infusion. Circulation: Cardiovascular Interventions, 2014, 7, 35-42.	3.9	33
87	Real-time use of instantaneous wave–free ratio: Results of the ADVISE in-practice: An international, multicenter evaluation of instantaneous wave–free ratio in clinical practice. American Heart Journal, 2014, 168, 739-748.	2.7	67
88	Reply. JACC: Cardiovascular Interventions, 2014, 7, 228-229.	2.9	2
89	Fractional Flow Reserve–Guided Revascularization. JACC: Cardiovascular Interventions, 2013, 6, 222-225.	2.9	139
90	Myocardial ischemia in aortic stenosis: Insights from arterial pulse-wave dynamics after percutaneous aortic valve replacement. Trends in Cardiovascular Medicine, 2013, 23, 185-191.	4.9	20

#	Article	IF	Citations
91	Reply. Journal of the American College of Cardiology, 2013, 62, 943-945.	2.8	1
92	Instantaneous Wave-Free Ratio. Journal of the American College of Cardiology, 2013, 62, 566.	2.8	21
93	Diagnostic Classification of the Instantaneous Wave-Free Ratio Is Equivalent to Fractional Flow Reserve and Is Not Improved With Adenosine Administration. Journal of the American College of Cardiology, 2013, 61, 1409-1420.	2.8	209
94	TCT-634 Diagnostic accuracy of basal stenosis resistance index (BSR) is higher than that of instantaneous wave-free ratio (iFR): validation of basal stenosis resistance index in an independent cohort of simultaneous pressure and flow measurements. Journal of the American College of Cardiology, 2013, 62, B193.	2.8	1
95	Can anatomy be used as a surrogate for physiology? The IVUS conundrum. International Journal of Cardiology, 2013, 168, 631-632.	1.7	1
96	Improvement in coronary haemodynamics after percutaneous coronary intervention: assessment using instantaneous wave-free ratio. Heart, 2013, 99, 1740-1748.	2.9	26
97	Hemodynamic Response to Intravenous Adenosine and Its Effect on Fractional Flow Reserve Assessment. Circulation: Cardiovascular Interventions, 2013, 6, 654-661.	3.9	59
98	Disturbed Coronary Hemodynamics in Vessels With Intermediate Stenoses Evaluated With Fractional Flow Reserve. Circulation, 2013, 128, 2557-2566.	1.6	137
99	Hybrid iFR-FFR decision-making strategy: implications for enhancing universal adoption of physiology-guided coronary revascularisation. EuroIntervention, 2013, 8, 1157-1165.	3.2	99
100	Maximal expansion capacity with current DES platforms: a critical factor for stent selection in the treatment of left main bifurcations?. EuroIntervention, 2013, 8, 1315-1325.	3.2	83
101	Classification performance of instantaneous wave-free ratio (iFR) and fractional flow reserve in a clinical population of intermediate coronary stenoses: results of the ADVISE registry. EuroIntervention, 2013, 9, 91-101.	3.2	161
102	Baseline coronary pressures, instant wave-free ratio (iFR) and Pd/Pa: making the most of available information. EuroIntervention, 2013, 9, 170-23.	3.2	1
103	How high can "accuracy" be for iFR (or IVUS, or SPECT, or OCT) if using fractional flow reserve as the gold standard?. EuroIntervention, 2013, 9, 770-2.	3. 2	4
104	Letter by Sen et al Regarding Article, "Diagnostic Accuracy of Combined Intracoronary Pressure and Flow Velocity Information During Baseline Conditions: Adenosine-Free Assessment of Functional Coronary Lesion Severity― Circulation: Cardiovascular Interventions, 2012, 5, e85; author reply e86-7.	3.9	2
105	Why Does Primary Angioplasty Not Work in Registries? Quantifying the Susceptibility of Real-World Comparative Effectiveness Data to Allocation Bias. Circulation: Cardiovascular Quality and Outcomes, 2012, 5, 759-766.	2.2	17
106	Improvement in Coronary Blood Flow Velocity With Acute Biventricular Pacing Is Predominantly Due to an Increase in a Diastolic Backward-Travelling Decompression (Suction) Wave. Circulation, 2012, 126, 1334-1344.	1.6	37
107	Development and Validation of a New Adenosine-Independent Index of Stenosis Severity From Coronary Wave–Intensity Analysis. Journal of the American College of Cardiology, 2012, 59, 1392-1402.	2.8	579
108	Arterial Pulse Wave Dynamics After Percutaneous Aortic Valve Replacement. Circulation, 2011, 124, 1565-1572.	1.6	89