Peter E Sudbery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10596528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth of Candida albicans hyphae. Nature Reviews Microbiology, 2011, 9, 737-748.	28.6	869
2	Candida albicans: A molecular revolution built on lessons from budding yeast. Nature Reviews Genetics, 2002, 3, 918-931.	16.3	482
3	Genes which control cell proliferation in the yeast Saccharomyces cerevisiae. Nature, 1980, 288, 401-404.	27.8	222
4	The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization. Molecular Microbiology, 2001, 41, 19-31.	2.5	145
5	Genetic analysis in the methylotrophic yeastHansenula polymorpha. Yeast, 1988, 4, 293-303.	1.7	143
6	Spitzenkörper, Exocyst, and Polarisome Components in Candida albicans Hyphae Show Different Patterns of Localization and Have Distinct Dynamic Properties. Eukaryotic Cell, 2010, 9, 1455-1465.	3.4	79
7	<i>Candida albicans</i> -Endothelial Cell Interactions: a Key Step in the Pathogenesis of Systemic Candidiasis. Infection and Immunity, 2008, 76, 4370-4377.	2.2	77
8	Adhesion of <i>Candida albicans</i> to Endothelial Cells under Physiological Conditions of Flow. Infection and Immunity, 2009, 77, 3872-3878.	2.2	58
9	Expression of the α-galactosidase fromCyamopsis tetragonoloba (guar) byHansenula polymorpha. Yeast, 1991, 7, 463-473.	1.7	54
10	SMALL-SIZED MUTANTS OF <i>SACCHAROMYCES CEREVISIAE</i> . Genetics, 1980, 96, 561-566.	2.9	48
11	The Spatial Distribution of the Exocyst and Actin Cortical Patches Is Sufficient To Organize Hyphal Tip Growth. Eukaryotic Cell, 2013, 12, 998-1008.	3.4	47
12	In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. Journal of Cell Science, 2003, 116, 3423-3431.	2.0	43
13	A Synthetic Lethal Screen Identifies a Role for the Cortical Actin Patch/Endocytosis Complex in the Response to Nutrient Deprivation inSaccharomyces cerevisiae. Genetics, 2004, 166, 707-719.	2.9	42
14	The non-Saccharomyces yeasts. Yeast, 1994, 10, 1707-1726.	1.7	31
15	In <i>Candida albicans</i> , phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Molecular Biology of the Cell, 2014, 25, 1097-1110.	2.1	29
16	Cell Cycle-Independent Phospho-Regulation of Fkh2 during Hyphal Growth Regulates Candida albicans Pathogenesis. PLoS Pathogens, 2015, 11, e1004630.	4.7	26
17	Nuclear DNA Content and Senescence in Physarum polycephalum. Nature: New Biology, 1973, 245, 263-265.	4.5	25
18	Regulation of polarised growth in fungi. Fungal Biology Reviews, 2008, 22, 44-55.	4.7	25

Peter E Sudbery

#	Article	IF	CITATIONS
19	Proteins that physically interact with the phosphatase Cdc14 in Candida albicans have diverse roles in the cell cycle. Scientific Reports, 2019, 9, 6258.	3.3	18
20	In <scp><i>C</i></scp> <i>andida albicans</i> hyphae, <scp>S</scp> ec2p is physically associated with <scp><i>SEC2</i> mRNA</scp> on secretory vesicles. Molecular Microbiology, 2014, 94, 828-842.	2.5	17
21	Quantitative Proteomic Analysis in Candida albicans Using SILAC-Based Mass Spectrometry. Proteomics, 2018, 18, 1700278.	2.2	15
22	Transcript characterisation, gene disruption and nucleotide sequence of the Saccharomyces cerevisiaeWHI2 gene. Gene, 1988, 66, 205-213.	2.2	14
23	A Synthetic Lethal Screen Identifies a Role for the Cortical Actin Patch/Endocytosis Complex in the Response to Nutrient Deprivation in Saccharomyces cerevisiae. Genetics, 2004, 166, 707-719.	2.9	8