Claire Vanpouille-Box

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1059231/publications.pdf

Version: 2024-02-01

218677 214800 5,114 63 26 47 citations g-index h-index papers 65 65 65 6847 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Long-term expression changes of immune-related genes in prostate cancer after radiotherapy. Cancer Immunology, Immunotherapy, 2022, 71, 839-850.	4.2	7
2	ELISA-based quantification of type I IFN secretion by irradiated cancer cells. Methods in Cell Biology, 2022, , .	1.1	1
3	Activin A Promotes Regulatory T-cell–Mediated Immunosuppression in Irradiated Breast Cancer. Cancer Immunology Research, 2021, 9, 89-102.	3.4	39
4	Activin A backs-up TGF-ß to promote regulatory T cells. Oncolmmunology, 2021, 10, 1883288.	4.6	8
5	DDRE-26. THE IMMUNO-METABOLIC ENZYME FASN PREVENTS CANCER-CELL INTRINSIC TYPE I INTERFERON RESPONSES IN GLIOBLASTOMA. Neuro-Oncology Advances, 2021, 3, i12-i12.	0.7	0
6	Radiotherapy: An immune response modifier for immuno-oncology. Seminars in Immunology, 2021, 52, 101474.	5.6	29
7	Abstract PR-007: Targeting FASN improves type I interferon responses in irradiated glioblastoma. , 2021,		1
8	Exploiting Radiation Therapy to Restore Immune Reactivity of Glioblastoma. Frontiers in Oncology, 2021, 11, 671044.	2.8	11
9	Immunological barriers to immunotherapy in primary and metastatic breast cancer. EMBO Molecular Medicine, 2021, 13, e14393.	6.9	5
10	Immune radiobiology. Journal of Translational Medicine, 2021, 19, 255.	4.4	1
11	Analysis of IncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. Journal of Translational Medicine, 2021, 19, 336.	4.4	20
12	Editorial: Nucleic Acid-Associated Inflammation. Frontiers in Immunology, 2021, 12, 791580.	4.8	0
13	TAMI-65. FASN-MEDIATED LIPID SYNTHESIS HAMPERS ANTI-CANCER IMMUNITY OF GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi211-vi212.	1.2	0
14	905â€FASN prevents immunogenicity of irradiated glioblastoma by inhibiting ER stress. , 2021, 9, A950-A950.		0
15	91 lmpact of ultra-fast  FLASH' radiotherapy on single cell immunogenomics in diffuse intrinsic pontine glioma (DIPG). , 2021, 9, A100-A100.		1
16	Immunogenic Cell Death Driven by Radiationâ€"Impact on the Tumor Microenvironment. Cancer Treatment and Research, 2020, 180, 281-296.	0.5	10
17	TAMI-27. RADIATION THERAPY REPROGRAMS THE TUMOR METABOLISM TO PROMOTE SURVIVAL AND IMMUNOSUPPRESSION IN GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii218-ii219.	1.2	O
18	460â€The immuno-metabolic enzyme FASN prevents anti-tumor immune responses in irradiated glioblastoma. , 2020, , .		0

#	Article	IF	CITATIONS
19	Detection and quantification of cytosolic DNA. Methods in Enzymology, 2019, 629, 17-33.	1.0	7
20	Baseline T cell dysfunction by single cell network profiling in metastatic breast cancer patients. , 2019, 7, 177.		32
21	Analysis of Pathologic Complete Response 10 Weeks After Radiotherapy—A Radiobiological Sin. JAMA Oncology, 2019, 5, 1365.	7.1	0
22	Apoptotic Caspases: A Double-Edged Sword in Radiation-Induced Immunogenicity. Trends in Cell Biology, 2019, 29, 851-853.	7.9	3
23	Pharmacological modulation of nucleic acid sensors â€" therapeutic potential and persisting obstacles. Nature Reviews Drug Discovery, 2019, 18, 845-867.	46.4	126
24	Nucleic Acid Sensing at the Interface Between Innate and Adaptive Immunity. International Review of Cell and Molecular Biology, 2019, 345, ix-xiii.	3.2	1
25	Nucleic Acid Sensing at the Interface Between Innate and Adaptive Immunity. International Review of Cell and Molecular Biology, 2019, 344, xi-xv.	3.2	3
26	Emerging biomarkers for the combination of radiotherapy and immune checkpoint blockers. Seminars in Cancer Biology, 2018, 52, 125-134.	9.6	51
27	Dual Transforming Growth Factor- \hat{l}^2 and Programmed Death-1 Blockade: A Strategy for Immune-Excluded Tumors?. Trends in Immunology, 2018, 39, 435-437.	6.8	27
28	SnapShot: CGAS-STING Signaling. Cell, 2018, 173, 276-276.e1.	28.9	110
29	BAX and BAK at the Gates of Innate Immunity. Trends in Cell Biology, 2018, 28, 343-345.	7.9	21
30	Radiation-Induced Long Noncoding RNAs in a Mouse Model after Whole-Body Irradiation. Radiation Research, 2018, 189, 251.	1.5	44
31	Toward Precision Radiotherapy for Use with Immune Checkpoint Blockers. Clinical Cancer Research, 2018, 24, 259-265.	7.0	137
32	Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nature Medicine, 2018, 24, 1845-1851.	30.7	626
33	Microarray analysis of miRNA expression profiles following whole body irradiation in a mouse model. Biomarkers, 2018, 23, 689-703.	1.9	28
34	Cytosolic DNA Sensing in Organismal Tumor Control. Cancer Cell, 2018, 34, 361-378.	16.8	191
35	Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect. Trends in Immunology, 2018, 39, 644-655.	6.8	312
36	Immunotherapy Bridge 2017 and Melanoma Bridge 2017: meeting abstracts. Journal of Translational Medicine, 2018, 16 , .	4.4	2

#	Article	IF	CITATIONS
37	Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs. Cancer Immunology Research, 2018, 6, 910-920.	3.4	245
38	TREX1 dictates the immune fate of irradiated cancer cells. Oncolmmunology, 2017, 6, e1339857.	4.6	81
39	DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nature Communications, 2017, 8, 15618.	12.8	1,194
40	Immune recognition of irradiated cancer cells. Immunological Reviews, 2017, 280, 220-230.	6.0	73
41	Trial watch: Immune checkpoint blockers for cancer therapy. Oncolmmunology, 2017, 6, e1373237.	4.6	62
42	CD103 ⁺ cells at the forefront of anticancer immunity. Oncolmmunology, 2017, 6, e1356154.	4.6	3
43	TREX1 is a checkpoint for innate immune sensing of DNA damage that fosters cancer immune resistance. Emerging Topics in Life Sciences, 2017, 1, 509-515.	2.6	8
44	Barriers to Radiation-Induced In Situ Tumor Vaccination. Frontiers in Immunology, 2017, 8, 229.	4.8	149
45	Abstract 4987: Role of the PD-1/PDL-1 pathway in resistance of patients with metastatic breast cancer to treatment with radiotherapy and TGFl 2 neutralization. , 2016, , .		0
46	$TGF\hat{I}^2$ and activin A control regulatory T cells in irradiated tumors. , 2015, 3, .		1
47	In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment. Vaccine, 2015, 33, 7415-7422.	3.8	142
48	$TGF\hat{I}^2$ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity. Cancer Research, 2015, 75, 2232-2242.	0.9	429
49	Combination of Radiotherapy and Immune Checkpoint Inhibitors. Seminars in Radiation Oncology, 2015, 25, 28-33.	2.2	121
50	Abstract IA04: Partnership of radiotherapy and immunotherapy: A new paradigm in cancer treatment., 2015,,.		0
51	Combinations of Immunotherapy and Radiation in Cancer Therapy. Frontiers in Oncology, 2014, 4, 325.	2.8	205
52	The Optimal Partnership of Radiation and Immunotherapy: from Preclinical Studies to Clinical Translation. Radiation Research, 2014, 182, 170-181.	1.5	80
53	Fractionated but not single dose radiation releases key signals of in situ tumor vaccination. , 2014, 2, .		1
54	Effect of particle size on the biodistribution of lipid nanocapsules: Comparison between nuclear and fluorescence imaging and counting. International Journal of Pharmaceutics, 2013, 453, 594-600.	5.2	54

#	Article	IF	Citations
55	The abscopal effect of local radiotherapy is induced by TGF \hat{I}^2 blockade. , 2013, 1, .		2
56	Activin A is upregulated by radiation in breast cancer cells and promotes conversion of CD4 T cells into regulatory T cells. , 2013, 1, .		0
57	The TLR7 agonist imiquimod as an adjuvant for radiotherapy-elicited in situ vaccination against breast cancer. Oncolmmunology, 2013, 2, e25997.	4.6	30
58	Synergy of Topical Toll-like Receptor 7 Agonist with Radiation and Low-Dose Cyclophosphamide in a Mouse Model of Cutaneous Breast Cancer. Clinical Cancer Research, 2012, 18, 6668-6678.	7.0	140
59	Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity. Frontiers in Oncology, 2012, 2, 136.	2.8	10
60	Lipid Nanocapsules Loaded with Rhenium-188 Reduce Tumor Progression in a Rat Hepatocellular Carcinoma Model. PLoS ONE, 2011, 6, e16926.	2.5	38
61	Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with 188Re-lipid nanocapsules. Biomaterials, 2011, 32, 6781-6790.	11.4	63
62	The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats. Biomaterials, 2011, 32, 1560-1573.	11.4	113
63	Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 1256-1264.	6.4	15