
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10588865/publications.pdf Version: 2024-02-01

HIDOSHI IDE

#	Article	IF	CITATIONS
1	Thymine glycols and urea residues in M13 DNA constitute replicative blocksin vitro. Nucleic Acids Research, 1985, 13, 8035-8052.	14.5	267
2	The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway. Nucleic Acids Research, 2004, 32, 73-81.	14.5	181
3	Isolation and Characterization of Endonuclease VIII from Escherichia coli. Biochemistry, 1994, 33, 1255-1264.	2.5	175
4	A novel sensitive and specific assay for abasic sites, the most commonly produced DNA lesion. Biochemistry, 1992, 31, 3703-3708.	2.5	159
5	Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols. EMBO Journal, 2002, 21, 3486-3493.	7.8	139
6	Protective Roles of Bacterioruberin and Intracellular KCl in the Resistance of Halobacterium salinarium against DNA-damaging Agents Journal of Radiation Research, 1998, 39, 251-262.	1.6	137
7	Synthesis and damage specificity of a novel probe for the detection of abasic sites in DNA. Biochemistry, 1993, 32, 8276-8283.	2.5	122
8	Differential Specificity of Human and Escherichia coli Endonuclease III and VIII Homologues for Oxidative Base Lesions. Journal of Biological Chemistry, 2004, 279, 14464-14471.	3.4	116
9	Human DNA Glycosylases Involved in the Repair of Oxidatively Damaged DNA. Biological and Pharmaceutical Bulletin, 2004, 27, 480-485.	1.4	115
10	Isolation and Characterization of a Novel Product, 2â€~-Deoxyoxanosine, from 2â€~-Deoxyguanosine, Oligodeoxynucleotide, and Calf Thymus DNA Treated by Nitrous Acid and Nitric Oxide. Journal of the American Chemical Society, 1996, 118, 2515-2516.	13.7	112
11	Mammalian 5-Formyluracilâ^'DNA Glycosylase. 2. Role of SMUG1 Uracilâ^'DNA Glycosylase in Repair of 5-Formyluracil and Other Oxidized and Deaminated Base Lesionsâ€. Biochemistry, 2003, 42, 5003-5012.	2.5	112
12	Nucleotide Excision Repair and Homologous Recombination Systems Commit Differentially to the Repair of DNA-Protein Crosslinks. Molecular Cell, 2007, 28, 147-158.	9.7	112
13	Homologous Recombination but Not Nucleotide Excision Repair Plays a Pivotal Role in Tolerance of DNA-Protein Cross-links in Mammalian Cells. Journal of Biological Chemistry, 2009, 284, 27065-27076.	3.4	109
14	Repair and biochemical effects of DNA–protein crosslinks. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 711, 113-122.	1.0	107
15	.alphaDeoxyadenosine, a Major Anoxic Radiolysis Product of Adenine in DNA, Is a Substrate for Escherichia coli Endonuclease IV. Biochemistry, 1994, 33, 7842-7847.	2.5	102
16	Distinct Repair Activities of Human 7,8-Dihydro-8-oxoguanine DNA Glycosylase and Formamidopyrimidine DNA Glycosylase for Formamidopyrimidine and 7,8-Dihydro-8-oxoguanine. Journal of Biological Chemistry, 2000, 275, 4956-4964.	3.4	96
17	Cloning and characterization of a mouse homologue (mnthl1) of Escherichia coli endonuclease III 1 1Edited by J. Miller. Journal of Molecular Biology, 1998, 282, 761-774.	4.2	81
18	Major oxidative products of cytosine are substrates for the nucleotide incision repair pathway. DNA Repair, 2007, 6, 8-18.	2.8	81

#	Article	IF	CITATIONS
19	DNA-Protein Cross-link Formation Mediated by Oxanine. Journal of Biological Chemistry, 2003, 278, 25264-25272.	3.4	78
20	Characterization of rat and human CYP2J enzymes as Vitamin D 25-hydroxylases. Steroids, 2006, 71, 849-856.	1.8	67
21	Quantitative Analysis of Isolated and Clustered DNA Damage Induced by Gamma-rays, Carbon Ion Beams, and Iron Ion Beams. Journal of Radiation Research, 2008, 49, 133-146.	1.6	62
22	Translocation and Stability of Replicative DNA Helicases upon Encountering DNA-Protein Cross-links. Journal of Biological Chemistry, 2013, 288, 4649-4658.	3.4	57
23	Radiation-induced DNA–protein cross-links: Mechanisms and biological significance. Free Radical Biology and Medicine, 2017, 107, 136-145.	2.9	56
24	Comparison of Substrate Specificities of Escherichia coli Endonuclease III and Its Mouse Homologue (mNTH1) Using Defined Oligonucleotide Substrates. Biochemistry, 2000, 39, 11389-11398.	2.5	55
25	α-Anomeric Deoxynucleotides, Anoxic Products of Ionizing Radiation, Are Substrates for the Endonuclease IV-Type AP Endonucleasesâ€. Biochemistry, 2004, 43, 15210-15216.	2.5	55
26	Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 786, 41-51.	1.0	55
27	Recognition of Formamidopyrimidine by Escherichia coli and Mammalian Thymine Glycol Glycosylases. Journal of Biological Chemistry, 2000, 275, 24781-24786.	3.4	54
28	Identification of a Novel Rat Microsomal Vitamin D3 25-Hydroxylase. Journal of Biological Chemistry, 2004, 279, 22848-22856.	3.4	54
29	Misincorporation of 2'-Deoxyoxanosine 5'-Triphosphate by DNA Polymerases and Its Implication for Mutagenesisâ€. Biochemistry, 1998, 37, 11592-11598.	2.5	52
30	Deglycosylation Susceptibility and Base-Pairing Stability of 2â€~-Deoxyoxanosine in Oligodeoxynucleotideâ€. Biochemistry, 1997, 36, 8013-8019.	2.5	51
31	Hydroxyl radical scavenging ability of bacterioruberin. Radiation Physics and Chemistry, 1997, 50, 267-269.	2.8	51
32	Substrate Specificity of Human Methylpurine DNA N-Glycosylase. Biochemistry, 2000, 39, 1959-1965.	2.5	51
33	Clustered DNA damage induced by heavy ion particles. Uchu Seibutsu Kagaku, 2004, 18, 206-215.	0.3	51
34	Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid. Nucleic Acids Research, 2002, 30, 4975-4984.	14.5	49
35	Formation of 2'-deoxyoxanosine from 2'-deoxyguanosine and nitrous acid: mechanism and intermediates. Nucleic Acids Research, 2000, 28, 544-551.	14.5	48
36	TopBP1 associates with NBS1 and is involved in homologous recombination repair. Biochemical and Biophysical Research Communications, 2007, 362, 872-879.	2.1	48

#	Article	IF	CITATIONS
37	Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress. Nucleic Acids Research, 2005, 33, 2181-2191.	14.5	47
38	T7 RNA Polymerases Backed up by Covalently Trapped Proteins Catalyze Highly Error Prone Transcription. Journal of Biological Chemistry, 2012, 287, 6562-6572.	3.4	47
39	DNA–protein cross-links: Formidable challenges to maintaining genome integrity. DNA Repair, 2018, 71, 190-197.	2.8	46
40	Synthesis of dihydrothymidine and thymidine glycol 5'-triphosphates and their ability to serve as substrates for Escherichia coli DNA polymerase I. Biochemistry, 1987, 26, 964-969.	2.5	45
41	Effects of a Guanine-derived Formamidopyrimidine Lesion on DNA Replication. Journal of Biological Chemistry, 2002, 277, 14589-14597.	3.4	44
42	Influence of .alphaDeoxyadenosine on the Stability and Structure of DNA. Thermodynamic and Molecular Mechanics Studies. Biochemistry, 1995, 34, 6947-6955.	2.5	43
43	Enzymatic Repair of 5-Formyluracil. Journal of Biological Chemistry, 1999, 274, 25136-25143.	3.4	43
44	Oxidation of Thymine to 5-Formyluracil in DNA Promotes Misincorporation of dGMP and Subsequent Elongation of a Mismatched Primer Terminus by DNA Polymerase. Journal of Biological Chemistry, 2001, 276, 16501-16510.	3.4	42
45	Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase. Nucleic Acids Research, 2004, 32, 5291-5302.	14.5	42
46	DNA substrates containing defined oxidative base lesions and their application to study substrate specificities of base excision repair enzymes. Progress in Molecular Biology and Translational Science, 2001, 68, 207-221.	1.9	38
47	Mammalian 5-Formyluracilâ `DNA Glycosylase. 1. Identification and Characterization of a Novel Activity That Releases 5-Formyluracil from DNAâ€. Biochemistry, 2003, 42, 4993-5002.	2.5	38
48	Enzymatic Repair of 5-Formyluracil. Journal of Biological Chemistry, 1999, 274, 25144-25150.	3.4	37
49	Detection of DNA–protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs. Nucleic Acids Research, 2012, 40, e143-e143.	14.5	37
50	Radiation-induced reduction of thymidine in aqueous solution: isolation and characterization of a novel dimeric product. Journal of the American Chemical Society, 1983, 105, 6740-6741.	13.7	32
51	Replication of DNA Templates Containing the .alphaAnomer of Deoxyadenosine, a Major Adenine Lesion Produced by Hydroxyl Radicals. Biochemistry, 1994, 33, 7127-7133.	2.5	32
52	Genetic Analysis of Repair and Damage Tolerance Mechanisms for DNA-Protein Cross-Links in <i>Escherichia coli</i> . Journal of Bacteriology, 2009, 191, 5657-5668.	2.2	31
53	Dihydrothymidine and thymidine glycol triphosphates as substrates for DNA polymerases: differential recognition of thymine C5-C6 bond saturation and sequence specificity of incorporation. Nucleic Acids Research, 1988, 16, 11339-11354.	14.5	29
54	Establishment of expanded and streamlined pipeline of PITCh knock-in – a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO. Bioengineered, 2017, 8, 302-308.	3.2	28

#	Article	IF	CITATIONS
55	Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation. Journal of Radiation Research, 2015, 56, 446-455.	1.6	27
56	On the mechanism of preferential incorporation of dAMP at abasic sites in translesional DNA synthesis. Role of proof reading activity of DNA polymerase and thermodynamic characterization of model template-primers containing an abasic site. Nucleic Acids Research, 1995, 23, 123-129.	14.5	26
57	Highly sensitive assay of DNA abasic sites in mammalian cells-optimization of the aldehyde reactive probe method. Analytica Chimica Acta, 1998, 365, 35-41.	5.4	26
58	Identification and Characterization of a Reaction Product of 2â€~-Deoxyoxanosine with Glycine. Chemical Research in Toxicology, 2000, 13, 227-230.	3.3	26
59	Roles of base excision repair enzymes Nth1p and Apn2p from Schizosaccharomyces pombe in processing alkylation and oxidative DNA damage. DNA Repair, 2005, 4, 1270-1280.	2.8	25
60	Direct observation of damage clustering in irradiated DNA with atomic force microscopy. Nucleic Acids Research, 2020, 48, e18-e18.	14.5	25
61	In Vitro selection of sequence contexts which enhance bypass of abasic sites and tetrahydrofuran by T4 DNA polymerase holoenzyme 1 1Edited by J. M. Miller. Journal of Molecular Biology, 1999, 286, 1045-1057.	4.2	24
62	Immunochemical Quantitation of Thymine Glycol in Oxidized and X-Irradiated DNA. Radiation Research, 1989, 118, 257.	1.5	23
63	Effects of 60Co Gamma-Rays, Ultraviolet Light, and Mitomycin C on Halobacterium salinarium and Thiobacillus intermedius Journal of Radiation Research, 1997, 38, 37-43.	1.6	23
64	Formation of clustered DNA damage inÂvivo upon irradiation with ionizing radiation: Visualization and analysis with atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119132119.	7.1	23
65	Synthesis and characterization of oligonucleotides containing 2'-fluorinated thymidine glycol as inhibitors of the endonuclease III reaction. Nucleic Acids Research, 2006, 34, 1540-1551.	14.5	22
66	Isolation and Characterization of Diazoate Intermediate upon Nitrous Acid and Nitric Oxide Treatment of 2â€~-Deoxycytidine. Biochemistry, 1999, 38, 7151-7158.	2.5	21
67	Purification and Characterization of a Novel DNA Repair Enzyme from the Extremely Radioresistant Bacterium Rubrobacter radiotolerans. Journal of Radiation Research, 2000, 41, 19-34.	1.6	21
68	Fluorescent probes for the analysis of DNA strand scission in base excision repair. Nucleic Acids Research, 2010, 38, e101-e101.	14.5	21
69	Induction of DNA–protein cross-links by ionizing radiation and their elimination from the genome. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 771, 45-50.	1.0	20
70	Characterization of antibodies to dihydrothymine, a radiolysis product of DNA. Biochemistry, 1989, 28, 4382-4387.	2.5	19
71	Assessment of the genotoxic potential of nitric oxide-induced guanine lesions by in vitro reactions with Escherichia coli DNA polymerase I. Mutagenesis, 2005, 20, 209-216.	2.6	19
72	Detection of Endonuclease III- and 8-Oxoguanine Glycosylase-sensitive Base Modifications in Î ³ -Irradiated DNA and Cells by the Aldehyde Reactive Probe (ARP) Assay. Journal of Radiation Research, 2004, 45, 229-237.	1.6	18

#	Article	IF	CITATIONS
73	Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs topoisomerase 1 DNA-protein crosslinks and 3′-blocking lesions in the absence of tyrosyl-DNA phosphodiesterase 1 (TDP1). DNA Repair, 2020, 91-92, 102849.	2.8	17
74	Properties of a monoclonal antibody for the detection of abasic sites, a common DNA lesion. Mutation Research DNA Repair, 1992, 273, 253-261.	3.7	16
75	Repair Kinetics of Abasic Sites in Mammalian Cells Selectively Monitored by the Aldehyde Reactive Probe (ARP). Nucleosides, Nucleotides and Nucleic Acids, 1998, 17, 503-513.	1.1	16
76	Mechanisms of DNA protection in Halobacterium salinarium, an extremely halophilic bacterium. Microbiological Research, 1999, 154, 185-190.	5.3	14
77	Novel Modification of 5-Formyluracil by Cysteine Derivatives in Aqueous Solution. Nucleosides, Nucleotides and Nucleic Acids, 1998, 17, 131-141.	1.1	13
78	Products of the Reaction between a Diazoate Derivative of 2â€~-Deoxycytidine andl-Lysine and Its Implication for DNAâ^'Nucleoprotein Cross-Linking by NO or HNO2. Chemical Research in Toxicology, 2000, 13, 1223-1227.	3.3	13
79	Restriction glycosylases: involvement of endonuclease activities in the restriction process. Nucleic Acids Research, 2016, 45, gkw1250.	14.5	13
80	Characterization of a Monoclonal Antibody to Thymidine Glycol Monophosphate. Radiation Research, 1990, 124, 131.	1.5	10
81	Quantitation of DNA damage by an aldehyde reactive probe (ARP). Nucleic Acids Symposium Series, 2001, 1, 45-46.	0.3	9
82	Influence of ring opening–closure equilibrium of oxanine, a novel damaged nucleobase, on migration behavior in capillary electrophoresis. Journal of Chromatography A, 2000, 877, 225-232.	3.7	8
83	Oligonucleotides Site-specifically Spin-labeled at 5'-Terminal or Internucleotide Linkage and Their Use in Gene Analyses. Free Radical Research Communications, 1993, 19, s117-s128.	1.8	7
84	Restriction-modification system with methyl-inhibited base excision and abasic-site cleavage activities. Nucleic Acids Research, 2015, 43, 2841-2852.	14.5	7
85	Repair of trapped topoisomerase II covalent cleavage complexes: Novel proteasome-independent mechanisms. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 170-184.	1.1	7
86	Optimization of the separation of oligodeoxyribonucleoside phosphoramidates and their characterization by circular dichroism spectroscopy. Journal of Chromatography A, 1993, 648, 157-163.	3.7	6
87	DNA strand breaks induced by ionizing radiation on Rubrobacter radiotolerans, an extremely radioresistant bacterium. Microbiological Research, 1999, 154, 173-178.	5.3	6
88	Formation, Repair, and Biological Effects of DNA–Protein Cross-Link Damage. , 0, , .		6
89	Selective cytotoxicity of the anti-diabetic drug, metformin, in glucose-deprived chicken DT40 cells. PLoS ONE, 2017, 12, e0185141.	2.5	6
90	Formation of a fairly stable diazoate intermediate of 5-methyl-2′-deoxycytidine by HNO2 and NO, and its implication to a novel mutation mechanism in CpG site. Bioorganic and Medicinal Chemistry, 2002, 10, 1063-1067.	3.0	5

#	Article	IF	CITATIONS
91	Repair of DNA-protein crosslink damage: Coordinated actions of nucleotide excision repair and homologous recombination. Nucleic Acids Symposium Series, 2008, 52, 57-58.	0.3	5
92	Formation of 2-chloroinosine from guanosine by treatment of HNO 2 in the presence of NaCl. Bioorganic and Medicinal Chemistry, 2001, 9, 2937-2941.	3.0	4
93	A Novel Monofunctional DNA Glycosylase Activity Against Thymine Glycol in Mouse Cell Nuclei. Journal of Radiation Research, 2008, 49, 249-259.	1.6	4
94	Detection of Specific Base Sequences in Solution Using DNA Probes Labeled with D- and/or15N-substituted Spin-labels. Free Radical Research Communications, 1993, 19, s109-s116.	1.8	3
95	Induction of Fragile Sites by Fluorodeoxyuridine and Cafeine Accompanies with Misincorpolation of Endogenous Uridine Nucleotide into DNA fo Feline Fibroblasts Journal of Veterinary Medical Science, 1998, 60, 1293-1297.	0.9	3
96	Detection of NO-induced DNA lesions by the modified aldehyde reactive probe (ARP) assay. Nucleic Acids Symposium Series, 2002, 2, 239-240.	0.3	3
97	NEIL1 mRNA Splicing Variants are Expressed in Normal Mouse Organs. Journal of Radiation Research, 2012, 53, 234-241.	1.6	3
98	Hypersensitivity of mouse NEIL1-knockdown cells to hydrogen peroxide during S phase. Journal of Radiation Research, 2014, 55, 707-712.	1.6	3
99	Reaction of NO with Nucleic Acid Bases and its Biological Implication. Frontiers in Organic Chemistry, 2005, 1, 297-341.	0.0	1
100	AP endonuclease knockdown enhances methyl methanesulfonate hypersensitivity of DNA polymerase β knockout mouse embryonic fibroblasts. Journal of Radiation Research, 2015, 56, 462-466.	1.6	1
101	Participation of TDP1 in the repair of formaldehyde-induced DNA-protein cross-links in chicken DT40 cells. PLoS ONE, 2020, 15, e0234859.	2.5	1
102	Repair pathways for radiation DNA damage under normoxic and hypoxic conditions: Assessment with a panel of repair-deficient human TK6 cells. Journal of Radiation Research, 2021, , .	1.6	1
103	Synergistic enhancement of 5-fluorouracil cytotoxicity by deoxyuridine analogs in cancer cells. Oncoscience, 2015, 2, 272-284.	2.2	1
104	INCORPORATION OF 2-DEOXYOXANOSINE TRIPHOSPHATE BY DNA POLYMERASES. The Japanese Journal of Pharmacology, 1997, 75, 67.	1.2	0
105	Repair of Oxidative DNA Damage in Mammalian Cells. Seibutsu Butsuri, 2006, 46, 263-269.	0.1	0
106	Incorporation of Dihydrothymidine and its Triphosphate During DNA Replication: An Implication for the Biological Consequence of Thymine C5-C6 Bond Saturation. , 1987, , 145-150.		0