Yang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10584657/publications.pdf

Version: 2024-02-01

315739 257450 1,552 45 24 38 citations h-index g-index papers 47 47 47 3403 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	BX-795 inhibits neuroblastoma growth and enhances sensitivity towards chemotherapy. Translational Oncology, 2022, 15, 101272.	3.7	9
2	A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells. Communications Biology, 2021, 4, 399.	4.4	8
3	Mechanisms restraining breakâ€induced replication at twoâ€ended DNA doubleâ€strand breaks. EMBO Journal, 2021, 40, e104847.	7.8	45
4	Development of improved SRC-3 inhibitors as breast cancer therapeutic agents. Endocrine-Related Cancer, 2021, 28, 657-670.	3.1	7
5	Drug-induced PD-L1 expression and cell stress response in breast cancer cells can be balanced by drug combination. Scientific Reports, 2019, 9, 15099.	3.3	40
6	Rad52 Restrains Resection at DNA Double-Strand Break Ends in Yeast. Molecular Cell, 2019, 76, 699-711.e6.	9.7	37
7	Small molecule inhibitor agerafenib effectively suppresses neuroblastoma tumor growth in mouse models via inhibiting ERK MAPK signaling. Cancer Letters, 2019, 457, 129-141.	7.2	16
8	Delanzomib, a novel proteasome inhibitor, sensitizes breast cancer cells to doxorubicinâ€induced apoptosis. Thoracic Cancer, 2019, 10, 918-929.	1.9	6
9	Inhibition of Ubiquitin-Specific Protease 14 Suppresses Cell Proliferation and Synergizes with Chemotherapeutic Agents in Neuroblastoma. Molecular Cancer Therapeutics, 2019, 18, 1045-1056.	4.1	11
10	SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Letters, 2019, 442, 310-319.	7.2	17
11	Dna2 nuclease deficiency results in large and complex DNA insertions at chromosomal breaks. Nature, 2018, 564, 287-290.	27.8	33
12	Targeting LRH‹1 in hepatoblastoma cell lines causes decreased proliferation. Oncology Reports, 2018, 41, 143-153.	2.6	14
13	Proteomic profiling identifies key coactivators utilized by mutant $\text{ER}\hat{l}\pm$ proteins as potential new therapeutic targets. Oncogene, 2018, 37, 4581-4598.	5.9	51
14	MELK is a novel therapeutic target in high-risk neuroblastoma. Oncotarget, 2018, 9, 2591-2602.	1.8	22
15	Machine Learning Applications in Head and Neck Radiation Oncology: Lessons From Open-Source Radiomics Challenges. Frontiers in Oncology, 2018, 8, 294.	2.8	37
16	The second-generation ALK inhibitor alectinib effectively induces apoptosis in human neuroblastoma cells and inhibits tumor growth in a TH-MYCN transgenic neuroblastoma mouse model. Cancer Letters, 2017, 400, 61-68.	7.2	37
17	Targeting SRC Coactivators Blocks the Tumor-Initiating Capacity of Cancer Stem-like Cells. Cancer Research, 2017, 77, 4293-4304.	0.9	36
18	Yeast Sub1 and human PC4 are G-quadruplex binding proteins that suppress genome instability at co-transcriptionally formed G4 DNA. Nucleic Acids Research, 2017, 45, 5850-5862.	14.5	41

#	Article	IF	CITATIONS
19	EWS-FLI1 and RNA helicase A interaction inhibitor YK-4-279 inhibits growth of neuroblastoma. Oncotarget, 2017, 8, 94780-94792.	1.8	5
20	Novel multiple tyrosine kinase inhibitor ponatinib inhibits bFGF-activated signaling in neuroblastoma cells and suppresses neuroblastoma growth in vivo. Oncotarget, 2017, 8, 5874-5884.	1.8	17
21	Novel Src/Abl tyrosine kinase inhibitor bosutinib suppresses neuroblastoma growth via inhibiting Src/Abl signaling. Oncotarget, 2017, 8, 1469-1480.	1.8	25
22	Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma. Oncotarget, 2017, 8, 1555-1568.	1.8	22
23	TAK1 inhibitor 5Z-7-oxozeaenol sensitizes cervical cancer to doxorubicin-induced apoptosis. Oncotarget, 2017, 8, 33666-33675.	1.8	18
24	Small molecule inhibitor regorafenib inhibits RET signaling in neuroblastoma cells and effectively suppresses tumor growth <i>in vivo</i> . Oncotarget, 2017, 8, 104090-104103.	1.8	17
25	Novel proteasome inhibitor delanzomib sensitizes cervical cancer cells to doxorubicin-induced apoptosis via stabilizing tumor suppressor proteins in the p53 pathway. Oncotarget, 2017, 8, 114123-114135.	1.8	17
26	Microfluidic Cell Deformability Assay for Rapid and Efficient Kinase Screening with the CRISPR as9 System. Angewandte Chemie, 2016, 128, 8703-8707.	2.0	6
27	Microfluidic Cell Deformability Assay for Rapid and Efficient Kinase Screening with the CRISPR as9 System. Angewandte Chemie - International Edition, 2016, 55, 8561-8565.	13.8	26
28	Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis. Scientific Reports, 2016, 6, 19423.	3.3	42
29	Wip1 inhibitor GSK2830371 inhibits neuroblastoma growth by inducing Chk2/p53-mediated apoptosis. Scientific Reports, 2016, 6, 38011.	3.3	29
30	Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4970-4975.	7.1	74
31	Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity. Scientific Reports, 2016, 6, 29090.	3.3	60
32	Novel proteasome inhibitor ixazomib sensitizes neuroblastoma cells to doxorubicin treatment. Scientific Reports, 2016, 6, 34397.	3.3	20
33	Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection. Nucleic Acids Research, 2016, 44, 2742-2753.	14.5	39
34	Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget, 2016, 7, 75914-75925.	1.8	17
35	Novel MDM2 inhibitor SAR405838 (MI-773) induces p53-mediated apoptosis in neuroblastoma. Oncotarget, 2016, 7, 82757-82769.	1.8	29
36	Stromal <scp>CYR</scp> 61 Confers Resistance to Mitoxantrone via Spleen Tyrosine Kinase Activation in Human Acute Myeloid Leukaemia. British Journal of Haematology, 2015, 170, 704-718.	2.5	27

#	Article	IF	CITATION
37	Tamoxifen Inhibits ER-negative Breast Cancer Cell Invasion and Metastasis by Accelerating Twist1 Degradation. International Journal of Biological Sciences, 2015, 11, 618-628.	6.4	29
38	Characterization of a Steroid Receptor Coactivator Small Molecule Stimulator that Overstimulates Cancer Cells and Leads to Cell Stress and Death. Cancer Cell, 2015, 28, 240-252.	16.8	69
39	Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science, 2015, 349, 742-747.	12.6	162
40	Fission Yeast Pxd1 Promotes Proper DNA Repair by Activating Rad16XPF and Inhibiting Dna2. PLoS Biology, 2014, 12, e1001946.	5.6	19
41	Bufalin Is a Potent Small-Molecule Inhibitor of the Steroid Receptor Coactivators SRC-3 and SRC-1. Cancer Research, 2014, 74, 1506-1517.	0.9	145
42	Genome-wide Screens for Sensitivity to Ionizing Radiation Identify the Fission Yeast Nonhomologous End Joining Factor Xrc4. G3: Genes, Genomes, Genetics, 2014, 4, 1297-1306.	1.8	11
43	Identification of Verrucarin A as a Potent and Selective Steroid Receptor Coactivator-3 Small Molecule Inhibitor. PLoS ONE, 2014, 9, e95243.	2.5	33
44	A proteome-wide visual screen identifies fission yeast proteins localizing to DNA double-strand breaks. DNA Repair, 2013, 12, 433-443.	2.8	31
45	Phosphorylation of Thr-178 and Thr-184 in the TAK1 T-loop Is Required for Interleukin (IL)-1-mediated Optimal NFÎB and AP-1 Activation as Well as IL-6 Gene Expression. Journal of Biological Chemistry, 2008, 283, 24497-24505.	3.4	94