
Stephen O Duke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1058017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glyphosate: a onceâ€inâ€aâ€century herbicide. Pest Management Science, 2008, 64, 319-325.	3.4	1,253
2	Natural products in crop protection. Bioorganic and Medicinal Chemistry, 2009, 17, 4022-4034.	3.0	909
3	Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicology and Applied Pharmacology, 2007, 222, 122-128.	2.8	631
4	Natural Products As Sources for New Pesticides. Journal of Natural Products, 2012, 75, 1231-1242.	3.0	457
5	Why have no new herbicide modes of action appeared in recent years?. Pest Management Science, 2012, 68, 505-512.	3.4	424
6	Natural products that have been used commercially as crop protection agents. Pest Management Science, 2007, 63, 524-554.	3.4	419
7	Overview of glyphosateâ€resistant weeds worldwide. Pest Management Science, 2018, 74, 1040-1049.	3.4	350
8	Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 2020, 295, 10307-10330.	3.4	329
9	Weed and Crop Allelopathy. Critical Reviews in Plant Sciences, 2003, 22, 367-389.	5.7	325
10	The history and current status of glyphosate. Pest Management Science, 2018, 74, 1027-1034.	3.4	321
11	The Current Status and Environmental Impacts of Glyphosate-Resistant Crops. Journal of Environmental Quality, 2006, 35, 1633-1658.	2.0	317
12	Natural Compounds as Next-Generation Herbicides. Plant Physiology, 2014, 166, 1090-1105.	4.8	270
13	Cancer Chemopreventive and Antioxidant Activities of Pterostilbene, a Naturally Occurring Analogue of Resveratrol. Journal of Agricultural and Food Chemistry, 2002, 50, 3453-3457.	5.2	258
14	Investigating the Mode of Action of Natural Phytotoxins. Journal of Chemical Ecology, 2000, 26, 2079-2094.	1.8	246
15	Invited Paper:â€,Chemicals from nature for weed management. Weed Science, 2002, 50, 138-151.	1.5	233
16	Protoporphyrinogen Oxidase-Inhibiting Herbicides. Weed Science, 1991, 39, 465-473.	1.5	205
17	Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops. Journal of Agricultural and Food Chemistry, 2012, 60, 10375-10397.	5.2	203
18	Weed Management in 2050: Perspectives on the Future of Weed Science. Weed Science, 2018, 66, 275-285.	1.5	203

#	Article	IF	CITATIONS
19	Biopesticides: State of the Art and Future Opportunities. Journal of Agricultural and Food Chemistry, 2014, 62, 11613-11619.	5.2	201
20	Polyphenol oxidase: The chloroplast oxidase with no established function. Physiologia Plantarum, 1988, 72, 659-665.	5.2	195
21	Glyphosate applied at low doses can stimulate plant growth. Pest Management Science, 2008, 64, 489-496.	3.4	190
22	Aminomethylphosphonic Acid, a Metabolite of Glyphosate, Causes Injury in Glyphosate-Treated, Glyphosate-Resistant Soybean. Journal of Agricultural and Food Chemistry, 2004, 52, 5139-5143.	5.2	189
23	Taking stock of herbicide-resistant crops ten years after introduction. Pest Management Science, 2005, 61, 211-218.	3.4	181
24	Artemisinin, a Constituent of Annual Wormwood (<i>Artemisia annua</i>), is a Selective Phytotoxin. Weed Science, 1987, 35, 499-505.	1.5	176
25	The Occurrence of Hormesis in Plants and Algae. Dose-Response, 2007, 5, dose-response.0.	1.6	168
26	The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry, 2002, 60, 281-288.	2.9	166
27	Rationale for a natural products approach to herbicide discovery. Pest Management Science, 2012, 68, 519-528.	3.4	166
28	Detoxification and Transcriptome Response in Arabidopsis Seedlings Exposed to the Allelochemical Benzoxazolin-2(3H)-one. Journal of Biological Chemistry, 2005, 280, 21867-21881.	3.4	165
29	Natural Fungicides fromRuta graveolensL. Leaves, Including a New Quinolone Alkaloid. Journal of Agricultural and Food Chemistry, 2003, 51, 890-896.	5.2	156
30	Natural products as sources for new mechanisms of herbicidal action. Crop Protection, 2000, 19, 583-589.	2.1	152
31	Glyphosate Degradation in Glyphosate-Resistant and -Susceptible Crops and Weeds. Journal of Agricultural and Food Chemistry, 2011, 59, 5835-5841.	5.2	149
32	Herbicides and plant hormesis. Pest Management Science, 2014, 70, 698-707.	3.4	149
33	Isoflavone, Glyphosate, and Aminomethylphosphonic Acid Levels in Seeds of Glyphosate-Treated, Glyphosate-Resistant Soybean. Journal of Agricultural and Food Chemistry, 2003, 51, 340-344.	5.2	146
34	Natural Toxins for Use in Pest Management. Toxins, 2010, 2, 1943-1962.	3.4	144
35	Tolerance and Accumulation of Shikimic Acid in Response to Glyphosate Applications in Glyphosate-Resistant and Nonglyphosate-Resistant Cotton (Gossypium hirsutumL.). Journal of Agricultural and Food Chemistry, 2002, 50, 506-512.	5.2	129
36	Somatic mutation-mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla (Hydrilla verticillata). Molecular Ecology, 2004, 13, 3229-3237.	3.9	120

#	Article	IF	CITATIONS
37	Sorgoleone. Phytochemistry, 2010, 71, 1032-1039.	2.9	120
38	A New Photosystem II Electron Transfer Inhibitor from Sorghum bicolor. Journal of Natural Products, 1998, 61, 927-930.	3.0	118
39	Perspectives on transgenic, herbicideâ€resistant crops in the United States almost 20 years after introduction. Pest Management Science, 2015, 71, 652-657.	3.4	110
40	Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants. Journal of Agricultural and Food Chemistry, 1988, 36, 813-818.	5.2	103
41	Aminomethylphosphonic Acid Accumulation in Plant Species Treated with Glyphosate. Journal of Agricultural and Food Chemistry, 2008, 56, 2125-2130.	5.2	102
42	Porphyrin synthesis is required for photobleaching activity of the p-nitrosubstituted diphenyl ether herbicides. Pesticide Biochemistry and Physiology, 1988, 31, 74-83.	3.6	101
43	p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for β-triketones from Leptospermum scoparium. Phytochemistry, 2007, 68, 2004-2014.	2.9	100
44	Alkylresorcinol Synthases Expressed in <i>Sorghum bicolor</i> Root Hairs Play an Essential Role in the Biosynthesis of the Allelopathic Benzoquinone Sorgoleone Â. Plant Cell, 2010, 22, 867-887.	6.6	97
45	Modes of Action of Microbially-Produced Phytotoxins. Toxins, 2011, 3, 1038-1064.	3.4	96
46	Pesticide effects on secondary metabolism of higher plants. Pest Management Science, 1989, 25, 361-373.	0.4	94
47	Structure-dependent phytotoxicity of fumonisins and related compounds in a duckweed bioassay. Phytochemistry, 1993, 33, 779-785.	2.9	93
48	Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage. Phytochemistry, 1999, 52, 805-813.	2.9	93
49	A Functional Genomics Investigation of Allelochemical Biosynthesis in Sorghum bicolor Root Hairs. Journal of Biological Chemistry, 2008, 283, 3231-3247.	3.4	88
50	DOSE–RESPONSE RELATIONSHIPS BETWEEN HERBICIDES WITH DIFFERENT MODES OF ACTION AND GROWTH OF LEMNA PAUCICOSTATA: AN IMPROVED ECOTOXICOLOGICAL METHOD. Environmental Toxicology and Chemistry, 2004, 23, 1074.	4.3	83
51	Glyphosate-Resistant Weeds: Current Status and Future Outlook. Outlooks on Pest Management, 2005, 16, 183-187.	0.2	83
52	Proving Allelopathy in Crop–Weed Interactions. Weed Science, 2015, 63, 121-132.	1.5	83
53	Production of hydroxybenzoic acids by Bradyrhizobium japonicum strains after treatment with glyphosate. Journal of Agricultural and Food Chemistry, 1992, 40, 289-293.	5.2	81
54	Effects of Glyphosate on Metabolism of Phenolic Compounds. III. Phenylalanine Ammonia-Lyase Activity, Free Amino Acids, Soluble Protein and Hydroxyphenolic Compounds in Axes of Dark-Grown Soybeans. Physiologia Plantarum, 1979, 46, 357-366.	5.2	77

#	Article	IF	CITATIONS
55	Tentoxin stops the processing of polyphenol oxidase into an active protein. Physiologia Plantarum, 1984, 60, 257-261.	5.2	77
56	Glyphosate-Resistant and -Susceptible Soybean (Glycine max) and Canola (Brassica napus) Dose Response and Metabolism Relationships with Glyphosate. Journal of Agricultural and Food Chemistry, 2007, 55, 3540-3545.	5.2	77
57	Is (â^')-Catechin a Novel Weapon of Spotted Knapweed (Centaurea stoebe)?. Journal of Chemical Ecology, 2009, 35, 141-153.	1.8	77
58	Composition and Some Biological Activities of the Essential Oil ofCallicarpaamericana(L.). Journal of Agricultural and Food Chemistry, 2000, 48, 3008-3012.	5.2	74
59	Effects of Glyphosate on Metabolism of Phenolic Compounds. Plant Physiology, 1980, 65, 17-21.	4.8	72
60	Glyphosate Tolerance Mechanism in Italian Ryegrass (<i>Lolium multiflorum</i>) from Mississippi. Weed Science, 2008, 56, 344-349.	1.5	72
61	Multiple Resistance to Glyphosate and Pyrithiobac in Palmer Amaranth (<i>Amaranthus palmeri</i>) from Mississippi and Response to Flumiclorac. Weed Science, 2012, 60, 179-188.	1.5	72
62	Tentoxin-induced loss of plastidic polyphenol oxidase. Physiologia Plantarum, 1981, 53, 421-428.	5.2	70
63	Antifungal Activity of Thiophenes fromEchinops ritro. Journal of Agricultural and Food Chemistry, 2006, 54, 1651-1655.	5.2	70
64	Structure Simplification of Natural Products as a Lead Generation Approach in Agrochemical Discovery. Journal of Agricultural and Food Chemistry, 2021, 69, 8324-8346.	5.2	68
65	Glyphosate effects on shikimate pathway products in leaves and flowers of velvetleaf. Phytochemistry, 1989, 28, 695-699.	2.9	66
66	A Rapid Bioassay for Selective Algicides. Weed Technology, 1997, 11, 767-774.	0.9	66
67	Phytotoxins from the Leaves ofRuta graveolens. Journal of Agricultural and Food Chemistry, 2004, 52, 3345-3349.	5.2	65
68	Synthesis and Pesticidal Activities of New Quinoxalines. Journal of Agricultural and Food Chemistry, 2020, 68, 7324-7332.	5.2	65
69	Herbicide Metabolism: Crop Selectivity, Bioactivation, Weed Resistance, and Regulation. Weed Science, 2019, 67, 149-175.	1.5	62
70	Strategies for Using Transgenes to Produce Allelopathic Crops1. Weed Technology, 2001, 15, 826-834.	0.9	61
71	Agricultural Impacts of Glyphosate-Resistant Soybean Cultivation in South America. Journal of Agricultural and Food Chemistry, 2011, 59, 5799-5807.	5.2	61
72	Growth Regulation and Other Secondary Effects of Herbicides. Weed Science, 2010, 58, 351-354.	1.5	59

#	Article	IF	CITATIONS
73	New directions for integrated weed management: Modern technologies, tools and knowledge discovery. Advances in Agronomy, 2019, 155, 243-319.	5.2	59
74	Herbicides as Probes in Plant Biology. Weed Science, 2010, 58, 340-350.	1.5	58
75	Metabolic Profiling and Enzyme Analyses Indicate a Potential Role of Antioxidant Systems in Complementing Glyphosate Resistance in an <i>Amaranthus palmeri</i> Biotype. Journal of Agricultural and Food Chemistry, 2015, 63, 9199-9209.	5.2	58
76	Biochemical and structural consequences of a glycine deletion in the α-8 helix of protoporphyrinogen oxidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1548-1556.	2.3	57
77	Herbicide-Resistant Field Crops. Advances in Agronomy, 1995, , 69-116.	5.2	55
78	Comparing Conventional and Biotechnology-Based Pest Management. Journal of Agricultural and Food Chemistry, 2011, 59, 5793-5798.	5.2	53
79	Low doses of glyphosate enhance growth, CO ₂ assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus. Pest Management Science, 2018, 74, 1197-1205.	3.4	53
80	Protoporphyrinogen Oxidase-Inhibiting Herbicides. , 2010, , 1733-1751.		50
81	Potential Ecological Roles of Artemisinin Produced by Artemisia annua L Journal of Chemical Ecology, 2014, 40, 100-117.	1.8	50
82	Glyphosate: environmental fate and impact. Weed Science, 2020, 68, 201-207.	1.5	50
83	Effects of Glyphosate on Metabolism of Phenolic Compounds. IV. Phenylalanine Ammonia-Lyase Activity, Free Amino Acids, and Soluble Hydroxyphenolic Compounds in Axes of Light-Grown Soybeans. Physiologia Plantarum, 1979, 46, 307-317.	5.2	49
84	The search for new herbicide mechanisms of action: Is there a â€~holy grail'?. Pest Management Science, 2022, 78, 1303-1313.	3.4	49
85	Laboratory assessment of the allelopathic effects of fine leaf fescues. Journal of Chemical Ecology, 2003, 29, 1919-1937.	1.8	47
86	Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2007, 42, 539-549.	1.5	47
87	Evolution of resistance to phytoene desaturase and protoporphyrinogen oxidase inhibitors–Âstate of knowledge. Pest Management Science, 2014, 70, 1358-1366.	3.4	47
88	Weeding with transgenes. Trends in Biotechnology, 2003, 21, 192-195.	9.3	46
89	Interaction of Chemical Pesticides and Their Formulation Ingredients with Microbes Associated with Plants and Plant Pests. Journal of Agricultural and Food Chemistry, 2018, 66, 7553-7561.	5.2	46
90	Omics Methods for Probing the Mode of Action of Natural and Synthetic Phytotoxins. Journal of Chemical Ecology, 2013, 39, 333-347.	1.8	45

#	Article	IF	CITATIONS
91	Alkylresorcinol biosynthesis in plants. Plant Signaling and Behavior, 2010, 5, 1286-1289.	2.4	43
92	Hormesis with glyphosate depends on coffee growth stage. Anais Da Academia Brasileira De Ciencias, 2013, 85, 813-822.	0.8	43
93	Khellin and Visnagin, Furanochromones from <i>Ammi visnaga</i> (L.) Lam., as Potential Bioherbicides. Journal of Agricultural and Food Chemistry, 2016, 64, 9475-9487.	5.2	43
94	Stable Isotope Resolved Metabolomics Reveals the Role of Anabolic and Catabolic Processes in Glyphosate-Induced Amino Acid Accumulation in <i>Amaranthus palmeri</i> Biotypes. Journal of Agricultural and Food Chemistry, 2016, 64, 7040-7048.	5.2	43
95	Synthesis, Crystal Structure, Herbicidal Activity, and SAR Study of Novel <i>N</i> -(Arylmethoxy)-2-chloronicotinamides Derived from Nicotinic Acid. Journal of Agricultural and Food Chemistry, 2021, 69, 6423-6430.	5.2	41
96	Joint action of natural and synthetic photosystem II inhibitors. Pest Management Science, 1999, 55, 137-146.	0.4	40
97	Structural Activity Relationship Studies of Zebra Mussel Antifouling and Antimicrobial Agents from Verongid Sponges. Journal of Natural Products, 2004, 67, 2117-2120.	3.0	39
98	Phytotoxic and Antifungal Compounds from Two Apiaceae Species, Lomatium californicum and Ligusticum hultenii, Rich Sources of Z-ligustilide and Apiol, Respectively. Journal of Chemical Ecology, 2005, 31, 1567-1578.	1.8	39
99	Functional Characterization of Desaturases Involved in the Formation of the Terminal Double Bond of an Unusual 16:31"9, 12, 15 Fatty Acid Isolated from Sorghum bicolor Root Hairs. Journal of Biological Chemistry, 2007, 282, 4326-4335.	3.4	39
100	Herbicide and Pharmaceutical Relationships. Weed Science, 2010, 58, 334-339.	1.5	39
101	Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol. BMC Medical Genomics, 2008, 1, 7.	1.5	37
102	Validation of serine/threonine protein phosphatase as the herbicide target site of endothall. Pesticide Biochemistry and Physiology, 2012, 102, 38-44.	3.6	36
103	Omics in Weed Science: A Perspective from Genomics, Transcriptomics, and Metabolomics Approaches. Weed Science, 2018, 66, 681-695.	1.5	36
104	A novel genomic approach to herbicide and herbicide mode of action discovery. Pest Management Science, 2019, 75, 314-317.	3.4	36
105	Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosateâ€resistant soybean. Pest Management Science, 2018, 74, 1166-1173.	3.4	35
106	Tentoxin does not cause chlorosis in greening mung bean leaves by inhibiting photophosphorylation. Physiologia Plantarum, 1982, 56, 387-398.	5.2	34
107	Acifluorfen-methyl effects on porphyrin synthesis in Lemna pausicostata Hegelm. 6746. Journal of Agricultural and Food Chemistry, 1990, 38, 2066-2071.	5.2	34
108	New Class of Algicidal Compounds and Fungicidal Activities Derived from a Chromene Amide of Amyris texana. Journal of Agricultural and Food Chemistry, 2010, 58, 9476-9482.	5.2	34

#	Article	IF	CITATIONS
109	Transcriptional responses to cantharidin, a protein phosphatase inhibitor, in <i>Arabidopsis thaliana</i> reveal the involvement of multiple signal transduction pathways. Physiologia Plantarum, 2011, 143, 188-205.	5.2	33
110	Soil Microbial Communities in Diverse Agroecosystems Exposed to the Herbicide Glyphosate. Applied and Environmental Microbiology, 2020, 86, .	3.1	33
111	Natural Products for Pest Management. ACS Symposium Series, 2006, , 2-21.	0.5	32
112	Discovery for New Herbicide Sites of Action by Quantification of Plant Primary Metabolite and Enzyme Pools. Engineering, 2020, 6, 509-514.	6.7	32
113	Phytotoxicity of constituents of glandular trichomes and the leaf surface of camphorweed, Heterotheca subaxillaris. Phytochemistry, 2009, 70, 69-74.	2.9	31
114	Effects of the aglycone of ascaulitoxin on amino acid metabolism in Lemna paucicostata. Pesticide Biochemistry and Physiology, 2011, 100, 41-50.	3.6	31
115	Phytotoxicity of Fumonisins and Rfzated Compounds. Toxin Reviews, 1993, 12, 225-251.	1.5	30
116	Phytotoxic Eremophilanes from Ligularia macrophylla. Journal of Agricultural and Food Chemistry, 2007, 55, 10656-10663.	5.2	29
117	In situ localization of the sites of paraquat action Plant, Cell and Environment, 1983, 6, 13-20.	5.7	28
118	Colletotrichin Causes Rapid Membrane Damage to Plant Cells. Journal of Phytopathology, 1992, 134, 289-305.	1.0	28
119	Strategies for the Use of Natural Products for Weed Management. Journal of Pesticide Sciences, 2002, 27, 298-306.	1.4	28
120	Natural Products for Weed Management in Organic Farming in the USA. Outlooks on Pest Management, 2010, 21, 156-160.	0.2	28
121	Bioassay-Directed Isolation and Identification of Phytotoxic and Fungitoxic Acetylenes from Conyza canadensis. Journal of Agricultural and Food Chemistry, 2012, 60, 5893-5898.	5.2	28
122	A cytochrome P450 <scp>CYP</scp> 71 enzyme expressed in <i>Sorghum bicolor</i> root hair cells participates in the biosynthesis of the benzoquinone allelochemical sorgoleone. New Phytologist, 2018, 218, 616-629.	7.3	28
123	Phytochrome Control of Longitudinal Growth and Phytochrome Synthesis in Maize Seedlings. Physiologia Plantarum, 1977, 40, 59-68.	5.2	27
124	The role of protoporphyrin IX in the mechanism of action of diphenyl ether herbicides. Pest Management Science, 1990, 30, 367-378.	0.4	27
125	Zebra Mussel Antifouling Activity of the Marine Natural Product Aaptamine and Analogs. Marine Biotechnology, 2006, 8, 366-372.	2.4	27
126	Modelling biphasic hormetic dose responses to predict sub-NOAEL effects using plant biology as an example. Current Opinion in Toxicology, 2022, 29, 36-42.	5.0	27

#	Article	IF	CITATIONS
127	SIGNIFICANCE OF FLUENCE-RESPONSE DATA IN PHYTOCHROME-INITIATED SEED GERMINATION. Photochemistry and Photobiology, 1978, 28, 383-388.	2.5	26
128	Biological Activity of Allelochemicals. , 2009, , 361-384.		26
129	Tabanone, a New Phytotoxic Constituent of Cogongrass (<i>Imperata cylindrica</i>). Weed Science, 2012, 60, 212-218.	1.5	26
130	Antiplasmodial and Cytotoxic Cytochalasins from an Endophytic Fungus, Nemania sp. UM10M, Isolated from a Diseased Torreya taxifolia Leaf. Molecules, 2019, 24, 777.	3.8	26
131	Amino- and Urea-Substituted Thiazoles Inhibit Photosynthetic Electron Transfer. Journal of Agricultural and Food Chemistry, 2000, 48, 3689-3693.	5.2	25
132	Isolation and Identification of Antifungal Fatty Acids from the Basidiomycete Gomphus floccosus. Journal of Agricultural and Food Chemistry, 2008, 56, 5062-5068.	5.2	25
133	The potential future roles of natural compounds and microbial bioherbicides in weed management in crops. Advances in Weed Science, 2022, 40, .	1.2	25
134	Effects of Glyphosate on the Mineral Content of Glyphosate-Resistant Soybeans (<i>Glycine max</i>). Journal of Agricultural and Food Chemistry, 2012, 60, 6764-6771.	5.2	24
135	Possible Glyphosate Tolerance Mechanism in Pitted Morningglory (<i>Ipomoea lacunosa</i> L.). Journal of Agricultural and Food Chemistry, 2015, 63, 1689-1697.	5.2	24
136	Glyphosate: The world's most successful herbicide under intense scientific scrutiny. Pest Management Science, 2018, 74, 1025-1026.	3.4	23
137	Isolation of a phytotoxic isocoumarin from <i>Diaporthe eresâ€</i> infected <scp><i>Hedera helix</i></scp> (English ivy) and synthesis of its phytotoxic analogs. Pest Management Science, 2018, 74, 37-45.	3.4	23
138	INTERACTIONS OF SYNTHETIC HERBICIDES WITH PLANT DISEASE AND MICROBIAL HERBICIDES. , 2007, , 277-296.		22
139	Herbicide Mechanisms of Action and Resistance. , 2019, , 36-48.		22
140	Terpenoids from the Genus Artemisia as Potential Pesticides. ACS Symposium Series, 1988, , 318-334.	0.5	21
141	Protoporphyrinogen Oxidase as the Optimal Herbicide Site in the Porphyrin Pathway. ACS Symposium Series, 1994, , 191-204.	O.5	21
142	Molluscicidal activity of vulgarone B fromArtemisia douglasiana(Besser) against the invasive, alien, mollusc pest,Pomacea canaliculata(Lamarck). International Journal of Pest Management, 2005, 51, 175-180.	1.8	21
143	The case against (–)-catechin involvement in allelopathy of <i>Centaurea stoebe</i> (spotted) Tj ETQq1 1 0.76	84314.rgBT 2.4	Överlock 10 21
144	Similarities between the discovery and regulation of pharmaceuticals and pesticides: in support of a	3.4	21

better understanding of the risks and benefits of each. Pest Management Science, 2011, 67, 790-797.

#	Article	IF	CITATIONS
145	Antiprotozoal and Antimicrobial Compounds from the Plant Pathogen <i>Septoria pistaciarum</i> . Journal of Natural Products, 2012, 75, 883-889.	3.0	21
146	Novel Dioxolane Ring Compounds for the Management of Phytopathogen Diseases as Ergosterol Biosynthesis Inhibitors: Synthesis, Biological Activities, and Molecular Docking. Journal of Agricultural and Food Chemistry, 2022, 70, 4303-4315.	5.2	21
147	Tentoxin effects on infrastructure and greening of ivyleaf morningglory (Ipomoea hederacea var.) Tj ETQq1 1 0.78	4314 rgBT	lOverlock
148	Effects of glyphosate on uptake, translocation, and intracellular localization of metal cations in soybean (Glycine max) seedlings. Pesticide Biochemistry and Physiology, 1985, 24, 384-394.	3.6	20
149	Naturalâ€productâ€based chromenes as a novel class of potential termiticides. Pest Management Science, 2011, 67, 1446-1450.	3.4	20
150	Enhanced Metabolic Degradation: The Last Evolved Glyphosate Resistance Mechanism of Weeds?. Plant Physiology, 2019, 181, 1401-1403.	4.8	20
151	Proving the Mode of Action of Phytotoxic Phytochemicals. Plants, 2020, 9, 1756.	3.5	20
152	Biosynthesis of Phenolic Compounds. ACS Symposium Series, 1985, , 113-131.	0.5	19
153	Photosensitizing Porphyrins as Herbicides. ACS Symposium Series, 1991, , 371-386.	0.5	19
154	Antagonism of BAS 625 by selected broadleaf herbicides and the role of ethanol. Weed Science, 2000, 48, 181-187.	1.5	19
155	Evaluation of Ferulic Acid for Controlling the Musty-Odor Cyanobacterium,Oscillatoria perornata, in Aquaculture Ponds. Journal of Applied Aquaculture, 2000, 10, 1-16.	1.4	19
156	Gene transcription profiles of Saccharomyces cerevisiae after treatment with plant protection fungicides that inhibit ergosterol biosynthesis. Pesticide Biochemistry and Physiology, 2005, 82, 133-153.	3.6	19
157	Biologically Active Tetranorditerpenoids from the Fungus <i>Sclerotinia homoeocarpa</i> Causal Agent of Dollar Spot in Turfgrass. Journal of Natural Products, 2009, 72, 2091-2097.	3.0	19
158	Effects of glyphosate-resistant crop cultivation on soil and water quality. GM Crops, 2010, 1, 16-24.	1.9	19
159	Discovery and structure activity relationships of 2-pyrazolines derived from chalcones from a pest management perspective. Medicinal Chemistry Research, 2015, 24, 3632-3644.	2.4	18
160	Glyphosate-Resistant and Conventional Canola (<i>Brassica napus</i> L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment. Journal of Agricultural and Food Chemistry, 2016, 64, 3508-3513.	5.2	18
161	Synthesis and Herbicidal Activity of 1,2,4â€Triazole Derivatives Containing a Pyrazole Moiety. Journal of Heterocyclic Chemistry, 2019, 56, 968-971.	2.6	18
162	Glyphosate: Uses Other Than in Glyphosate-Resistant Crops, Mode of Action, Degradation in Plants, and Effects on Non-target Plants and Agricultural Microbes. Reviews of Environmental Contamination and Toxicology, 2020, 255, 1-65.	1.3	18

#	Article	IF	CITATIONS
163	The potential influence of hormesis on evolution of resistance to herbicides. Current Opinion in Environmental Science and Health, 2022, , 100360.	4.1	18
164	Structure—Activity Relationships of Protoporphyrinogen Oxidase Inhibiting Herbicides. ACS Symposium Series, 1994, , 133-146.	0.5	17
165	Relationships Between Phenylalanine Ammonia-Lyase Activity and Physiological Responses of Soybean (<i>Glycine max</i>) Seedlings to Herbicides. Weed Science, 1983, 31, 845-852.	1.5	16
166	Natural Products with Potential Use as Herbicides. ACS Symposium Series, 1994, , 348-362.	0.5	16
167	Clues to New Herbicide Mechanisms of Action from Natural Sources. ACS Symposium Series, 2013, , 203-215.	0.5	16
168	Discovery of New Herbicide Modes of Action with Natural Phytotoxins. ACS Symposium Series, 2015, , 79-92.	0.5	16
169	Transgenic Crops for Herbicide Resistance. , 2010, , 133-166.		16
170	Herbicide-Resistant Crops-Their Impact on Weed Science Journal of Weed Science and Technology, 1998, 43, 94-100.	0.1	15
171	Glyphosate Resistance Technology Has Minimal or No Effect on Maize Mineral Content and Yield. Journal of Agricultural and Food Chemistry, 2018, 66, 10139-10146.	5.2	15
172	Natural Products in Pest Management: Innovative Approaches for Increasing their Use. Pest Management Science, 2019, 75, 2299-2300.	3.4	15
173	New Phytotoxic Cassane-like Diterpenoids from <i>Eragrostis plana</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 1973-1981.	5.2	15
174	Goss's Wilt Incidence in Sweet Corn Is Independent of Transgenic Traits and Glyphosate. Hortscience: A Publication of the American Society for Hortcultural Science, 2015, 50, 1791-1794.	1.0	15
175	Natural Phytotoxins as Herbicides. ACS Symposium Series, 1993, , 110-124.	0.5	14
176	The emergence of grass root chemical ecology. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16729-16730.	7.1	14
177	Weeding with allelochemicals and allelopathy—a commentary. Pest Management Science, 2007, 63, 307-307.	3.4	14
178	Serine/threonine protein phosphatases: Multi-purpose enzymes in control of defense mechanisms. Plant Signaling and Behavior, 2011, 6, 1921-1925.	2.4	14
179	Light effects on phenylalanine ammonia-lyase substrate levels and turnover rates in maize seedlings. Plant Science Letters, 1976, 6, 361-367.	1.8	13
180	Enantioselectivity of protoporphyrinogen oxidase-inhibiting herbicides. Pest Management Science, 1994, 40, 265-277.	0.4	13

#	Article	IF	CITATIONS
181	Porphyrin Biosynthesis as a Tool in Pest Management. ACS Symposium Series, 1994, , 1-16.	O.5	13
182	Molluscicidal activity of vulgarone B against ram's horn snail(Planorbella trivolvis). Pest Management Science, 2004, 60, 479-482.	3.4	13
183	The Contribution of Romidepsin to the Herbicidal Activity of <i>Burkholderia rinojensis</i> Biopesticide. Journal of Natural Products, 2020, 83, 843-851.	3.0	12
184	Benefits of Resveratrol and Pterostilbene to Crops and Their Potential Nutraceutical Value to Mammals. Agriculture (Switzerland), 2022, 12, 368.	3.1	12
185	Correlation of protoporphyrinogen oxidase inhibition byO-phenyl pyrrolidino- and piperidino-carbamates with their herbicidal effects. Pest Management Science, 1992, 35, 227-235.	0.4	11
186	Roots of the Invasive Species Carduus nutans L. and C. acanthoides L. Produce Large Amounts of Aplotaxene, a Possible Allelochemical. Journal of Chemical Ecology, 2014, 40, 276-284.	1.8	11
187	New Pesticidal Diterpenoids from Vellozia gigantea (Velloziaceae), an Endemic Neotropical Plant Living in the Endangered Brazilian Biome Rupestrian Grasslands. Molecules, 2017, 22, 175.	3.8	11
188	Comparative Metabolomic Analyses of <i>Ipomoea lacunosa</i> Biotypes with Contrasting Glyphosate Tolerance Captures Herbicide-Induced Differential Perturbations in Cellular Physiology. Journal of Agricultural and Food Chemistry, 2018, 66, 2027-2039.	5.2	11
189	Transcriptome responses to the natural phytotoxin <i>t</i> â€chalcone in <scp><i>Arabidopsis thaliana</i></scp> L. Pest Management Science, 2019, 75, 2490-2504.	3.4	11
190	Effect of low glyphosate doses on flowering and seed germination of glyphosateâ€resistant and â€susceptible <scp><i>Digitaria insularis</i></scp> . Pest Management Science, 2022, 78, 1227-1239.	3.4	11
191	A New Photosystem II Electron Transfer Inhibitor fromSorghum Bicolor. Journal of Natural Products, 1998, 61, 1456-1456.	3.0	10
192	Cantharidin, a protein phosphatase inhibitor, strongly upregulates detoxification enzymes in the Arabidopsis proteome. Journal of Plant Physiology, 2015, 173, 33-40.	3.5	10
193	Phytotoxic triterpene saponins from Bellis longifolia, an endemic plant of Crete. Phytochemistry, 2017, 144, 71-77.	2.9	10
194	Lack of effects of glyphosate and glufosinate on growth, mineral content, and yield of glyphosate- and glufosinate-resistant maize. GM Crops and Food, 2018, 9, 189-198.	3.8	10
195	Synthesis and biological activity of novel 1,3,4-oxadiazole derivatives containing a pyrazole moiety. Research on Chemical Intermediates, 2019, 45, 5989-6001.	2.7	10
196	Transcriptome and binding data indicate that citral inhibits single strand DNAâ€binding proteins. Physiologia Plantarum, 2020, 169, 99-109.	5.2	10
197	Antimalarials and Phytotoxins from Botryosphaeria dothidea Identified from a Seed of Diseased Torreya taxifolia. Molecules, 2021, 26, 59.	3.8	10
198	Tentoxin effects on variable fluorescence and P515 electrochromic absorbance changes in tentoxin-sensitive and -resistant plant species. Plant Science, 1993, 90, 119-126.	3.6	9

#	Article	IF	CITATIONS
199	Challenges of Pest Control with Enhanced Toxicological and Environmental Safety. ACS Symposium Series, 1993, , 1-13.	0.5	9
200	Microbial phytotoxins as potential herbicides. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 1996, 31, 427-434.	1.5	9
201	Bioactivation of the Fungal Phytotoxin 2,5-Anhydro-D-glucitol by Glycolytic Enzymesisan Essential Component of itsMechanism of Action. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 645-653.	1.4	9
202	Hormesis with Pesticides. Pest Management Science, 2014, 70, 689-689.	3.4	9
203	Synthesis and Biological Evaluation of 6-[(1 <i>R</i>)-1-Hydroxyethyl]-2,4a(<i>R</i>),6(<i>S</i>),8a(<i>R</i>)-tetrahydropyrano-[3,2- <i>b</i>]-pyran-2-or and Structural Analogues of the Putative Structure of Diplopyrone. Journal of Organic Chemistry, 2019. 84. 666-678.	າອ 3.2	9
204	Chapter Twelve Crop Allelopathy: Enhancement through biotechnology. Recent Advances in Phytochemistry, 2001, , 257-274.	0.5	8
205	The Growing Need for Biochemical Bioherbicides. ACS Symposium Series, 2014, , 31-43.	0.5	8
206	Pesticide Dose $\hat{a} \in A$ Parameter with Many Implications. ACS Symposium Series, 2017, , 1-13.	0.5	8
207	Genomics and Weeds: A Synthesis. , 0, , 221-247.		8
208	Curvularin and Dehydrocurvularin as Phytotoxic Constituents from <i>Curvularia intermedia</i> Infecting <i>Pandanus amaryllifolius</i> . Journal of Agricultural Chemistry and Environment, 2016, 05, 12-22.	0.5	8
209	Phytotoxicity of Pesticide Degradation Products. ACS Symposium Series, 1991, , 188-204.	0.5	7
210	Control of coca plants (Erythroxylum cocaandE. novogranatense) with glyphosate. Weed Science, 1997, 45, 551-556.	1.5	7
211	A Functional Genomics Approach for the Identification of Genes Involved in the Biosynthesis of the Allelochemical Sorgoleone. ACS Symposium Series, 2006, , 265-276.	0.5	7
212	Phomalactone from a Phytopathogenic Fungus Infecting ZINNIA elegans (ASTERACEAE) Leaves. Journal of Chemical Ecology, 2015, 41, 602-612.	1.8	7
213	Bioassay-Guided Isolation and Structure Elucidation of Fungicidal and Herbicidal Compounds from Ambrosia salsola (Asteraceae). Molecules, 2019, 24, 835.	3.8	7
214	A time for herbicide discovery. Pest Management Science, 2012, 68, 493-493.	3.4	6
215	Synthesis of Pyranopyrans Related to Diplopyrone and Evaluation as Antibacterials and Herbicides. Journal of Agricultural and Food Chemistry, 2020, 68, 9906-9916.	5.2	6
216	Green Plant Protection Innovation: Challenges and Perspectives. Engineering, 2020, 6, 483-484.	6.7	6

#	Article	IF	CITATIONS
217	<i>In vivo</i> assembly of the sorgoleone biosynthetic pathway and its impact on agroinfiltrated leaves of <i>Nicotiana benthamiana</i> . New Phytologist, 2021, 230, 683-697.	7.3	6
218	Natural Product-Based Chemical Herbicides. , 2018, , 153-165.		6
219	Ecotoxicology of Glyphosate, Its Formulants, and Environmental Degradation Products. Reviews of Environmental Contamination and Toxicology, 2021, 255, 129-205.	1.3	6
220	Sesquiterpenoids from culture of the fungus Stereum complicatum (Steraceae): structural diversity, antifungal and phytotoxic activities. Phytochemistry Letters, 2020, 37, 51-58.	1.2	5
221	Is Mineral Nutrition of Glyphosate-resistant Crops Altered by Glyphosate Treatment?. Outlooks on Pest Management, 2018, 29, 206-208.	0.2	5
222	Finding New Fungicides from Natural Sources. ACS Symposium Series, 2006, , 152-167.	0.5	4
223	Phytotchemical Phytotoxins and Hormesis $\hat{a} \in A$ Commentary. Dose-Response, 2011, 9, dose-response.1.	1.6	4
224	Human Health and Transgenic Crops Symposium Introduction. Journal of Agricultural and Food Chemistry, 2013, 61, 11693-11694.	5.2	4
225	Summing up the past year forPest Management Science. Pest Management Science, 2017, 73, 7-8.	3.4	4
226	Glyphosate exposure and toxicology. Pest Management Science, 2020, 76, 2873-2873.	3.4	4
227	Agnes Rimando, a Pioneer in the Fate of Glyphosate and Its Primary Metabolite in Plants. Journal of Agricultural and Food Chemistry, 2020, 68, 5623-5630.	5.2	4
228	Secondary metabolites of <i>Thymelaea hirsuta</i> , a plant collected from the Sicilian Island of Lampedusa. Natural Product Research, 2021, 35, 3977-3984.	1.8	4
229	Furanocoumarin with Phytotoxic Activity from the Leaves of <i>Amyris elemifera</i> (Rutaceae). ACS Omega, 2021, 6, 401-407.	3.5	4
230	Stepping beyond hormesis modeling and sub-NOAEL predictions in plant biology. Current Opinion in Environmental Science and Health, 2022, 28, 100366.	4.1	4
231	HPLC and in vivo Spectrophotometric Detection of Porphyrins in Plant Tissues Treated with Porphyrinogenic Herbicides. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1993, 48, 317-325.	1.4	3
232	New Herbicide Target Sites from Natural Compounds. ACS Symposium Series, 2004, , 151-160.	0.5	3
233	Soybean Mineral Composition and Glyphosate Use. , 2015, , 369-376.		3
234	Phytotoxic Lignans from <i>Artemisia arborescens</i> . Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	3

#	Article	IF	CITATIONS
235	Phytochemicals for Pest Management: Current Advances and Future Opportunities. , 2013, , 71-94.		3
236	Predicting Activity of Protoporphyrinogen Oxidase Inhibitors by Computer-Aided Molecular Modeling. ACS Symposium Series, 1995, , 211-224.	0.5	2
237	Factors affecting toxicity of ferulate towards the cyanobacteriumOscillatoriacfchalybea. Pest Management Science, 1999, 55, 726-732.	0.4	2
238	Transgenic Herbicide-Resistant Crops: Current Status and Potential for the Future. Outlooks on Pest Management, 2005, 16, 208-211.	0.2	2
239	Characterization of the Allelopathic Potential of Sugarcane Leaves and Roots. Journal of Agricultural Chemistry and Environment, 2021, 10, 257-274.	0.5	2
240	Protoporphyrinogen Oxidase Inhibitors. , 2001, , 1529-1541.		2
241	Bioactivation of the fungal phytotoxin 2,5-anhydro-D-glucitol by glycolytic enzymes is an essential component of its mechanism of action. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 645-53.	1.4	2
242	Molecular and Biochemical Investigations of Sorgoleone Biosynthesis. Recent Advances in Phytochemistry, 2006, 40, 157-177.	0.5	1
243	Global Gene Expression Approaches to Mode-of-Action Studies with Natural Product-Based Pesticides. ACS Symposium Series, 2006, , 255-264.	0.5	1
244	Molecular and Biochemical Characterization of Novel Polyketide Synthases Likely to Be Involved in the Biosynthesis of Sorgoleone. ACS Symposium Series, 2007, , 141-151.	0.5	1
245	Phytotoxic Furanocoumarins from the Shoots of Semenovia Transiliensis. Natural Product Communications, 2012, 7, 1934578X1200701.	0.5	1
246	Identification and Characterization of Biopesticides from Acorus tatarinowii and A. calamus. ACS Symposium Series, 2016, , 121-143.	0.5	1
247	Summing up 2015. Pest Management Science, 2016, 72, 5-7.	3.4	1
248	2019 – A year of continued growth. Pest Management Science, 2020, 76, 7-9.	3.4	1
249	Factors affecting toxicity of ferulate towards the cyanobacterium Oscillatoria cf chalybea. Pest Management Science, 1999, 55, 726-732.	0.4	1
250	S-1 Herbicide-Resistant Crops-Their Impact on Weed Science. Journal of Weed Science and Technology, 1998, 43, 20-21.	0.1	1
251	How Many Ways Can Nature Kill the Goose That Laid the Golden Egg? – The Many Mechanisms of Evolved Glyphosate Resistance. Outlooks on Pest Management, 2021, 32, 197-202.	0.2	1
252	7α-Hydroxyfriedelan-3-one-26-ol-29-oic acid and other Constituents from Pileostegia viburnoides var. glabrescens. Natural Product Communications, 2016, 11, 931-934.	0.5	1

#	Article	IF	CITATIONS
253	Biotechnology to reduce synthetic herbicide use. Phytoparasitica, 2003, 31, 429-432.	1.2	0
254	Phytotoxic Activity of Flavonoids from Dicranostyles Ampla. Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	0
255	Introduction to the Symposium on Nonherbicide Use of Herbicides. Weed Science, 2010, 58, 323-323.	1.5	0
256	Editorial – January, 2013. Pest Management Science, 2013, 69, 1-2.	3.4	0
257	Current and future status of the use of transgenes for pest management. Pest Management Science, 2015, 71, 643-644.	3.4	0
258	7α-Hydroxyfriedelan-3-one-26-ol-29-oic acid and other Constituents from <i>Pileostegia viburnoides</i> var. <i>glabrescens</i> . Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	0
259	Use of Omics Methods To Determine the Mode of Action of Natural Phytotoxins. ACS Symposium Series, 2018, , 33-46.	0.5	0
260	Sesquiterpene-α-amino acid quaternary ammonium hybrids from Stereum complicatum (Steraceae). Biochemical Systematics and Ecology, 2020, 93, 104176.	1.3	0
261	Success, despite another plague year. Pest Management Science, 2022, 78, 7-11.	3.4	0
262	The Society of Chemical Industry at 140 years and <i>Pest Management Science</i> . Pest Management Science, 2022, 78, 2105-2107.	3.4	0
263	Battling Blood-Feeding Insects, Weeds, and Hereditary Diseases with Inhibitors of a Common Enzyme. Outlooks on Pest Management, 2022, 33, 54-57.	0.2	Ο