Shi-shang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1057996/publications.pdf

Version: 2024-02-01

220 8,715
papers citations

41344 49 82 h-index g-index

222 222 all docs citations

222 times ranked 11181 citing authors

#	Article	IF	CITATIONS
1	Heterointerface engineering and piezoelectric effect enhanced performance of self-charging supercapacitors power cell. Nano Energy, 2022, 91, 106701.	16.0	28
2	A light-induced hydrogel responsive platform to capture and selectively isolate single circulating tumor cells. Nanoscale, 2022, 14, 3504-3512.	5.6	4
3	Electric field-assisted MnO2 nanomaterials for rapid capture and in-situ delivery of circulating tumour cells. Nanoscale, 2022, , .	5. 6	0
4	Modeling cancer metastasis using acoustically bio-printed patient-derived 3D tumor microtissues. Journal of Materials Chemistry B, 2022, 10, 1843-1852.	5.8	11
5	Nanomaterial-Based Immunocapture Platforms for the Recognition, Isolation, and Detection of Circulating Tumor Cells. Frontiers in Bioengineering and Biotechnology, 2022, 10, 850241.	4.1	12
6	Acoustic Bioprinting of Patientâ€Derived Organoids for Predicting Cancer Therapy Responses. Advanced Healthcare Materials, 2022, 11, e2102784.	7.6	20
7	In Situ Microreaction Platform Based on Acoustic Droplet Manipulation for Ultra-High-Precision Multiplex Bioassay. Analytical Chemistry, 2022, 94, 6347-6354.	6.5	5
8	Noninvasive Optical Isolation and Identification of Circulating Tumor Cells Engineered by Fluorescent Microspheres. ACS Applied Bio Materials, 2022, 5, 2768-2776.	4.6	6
9	Self-powered pacemaker based on all-in-one flexible piezoelectric nanogenerator. Nano Energy, 2022, 99, 107420.	16.0	19
10	Dual Redox Active Sites N @Ni ₂ P/NiSe ₂ Heterostructure Supercapacitor Integrated with Triboelectric Nanogenerator toward Efficient Energy Harvesting and Storage. Advanced Functional Materials, 2022, 32, .	14.9	28
11	Highly biocompatible and recyclable biomimetic nanoparticles for antibiotic-resistant bacteria infection. Biomaterials Science, 2021, 9, 826-834.	5.4	28
12	On-chip rapid drug screening of leukemia cells by acoustic streaming. Lab on A Chip, 2021, 21, 4005-4015.	6.0	21
13	The acoustic droplet printing of functional tumor microenvironments. Lab on A Chip, 2021, 21, 1604-1612.	6.0	46
14	Scaffold-free generation of heterotypic cell spheroids using acoustofluidics. Lab on A Chip, 2021, 21, 3498-3508.	6.0	17
15	Acoustic Droplet Vitrification Method for High-Efficiency Preservation of Rare Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12950-12959.	8.0	9
16	Transforming Pt-SnO2 Nanoparticles into Pt-SnO2 Composite Nanoceramics for Room-Temperature Hydrogen-Sensing Applications. Materials, 2021, 14, 2123.	2.9	7
17	Laterally-excited bulk-wave resonators (XBARs) with embedded electrodes in 149.5 \hat{A}° Z-cut LiNbO3. , 2021, , .		1
18	Acoustic Droplet-Assisted Superhydrophilic–Superhydrophobic Microarray Platform for High-Throughput Screening of Patient-Derived Tumor Spheroids. ACS Applied Materials & Samp; Interfaces, 2021, 13, 23489-23501.	8.0	18

#	Article	IF	Citations
19	Detection of circulating tumor cells and single cell extraction technology: principle, effect and application prospect. Nano Futures, 2021, 5, 032002.	2.2	5
20	Selfâ€powered technology based on nanogenerators for biomedical applications. Exploration, 2021, 1, 90-114.	11.0	54
21	Acoustic Droplet Printing Tumor Organoids for Modeling Bladder Tumor Immune Microenvironment within a Week. Advanced Healthcare Materials, 2021, 10, e2101312.	7.6	27
22	Emerging Microfluidic Technologies for the Detection of Circulating Tumor Cells and Fetal Nucleated Red Blood Cells. ACS Applied Bio Materials, 2021, 4, 1140-1155.	4.6	19
23	Therapeutic Plateletpheresis in Patients With Thrombocytosis: Gender, Hemoglobin Before Apheresis Significantly Affect Collection Efficiency. Frontiers in Medicine, 2021, 8, 762419.	2.6	2
24	ZnO nanowire-integrated bio-microchips for specific capture and non-destructive release of circulating tumor cells. Nanoscale, 2020, 12, 1455-1463.	5.6	31
25	Surface acoustic wave-based ultraviolet photodetectors: a review. Science Bulletin, 2020, 65, 587-600.	9.0	30
26	Rapid Microfluidic Formation of Uniform Patient-Derived Breast Tumor Spheroids. ACS Applied Bio Materials, 2020, 3, 6273-6283.	4.6	27
27	Efficient Detection and Single-Cell Extraction of Circulating Tumor Cells in Peripheral Blood. ACS Applied Bio Materials, 2020, 3, 6521-6528.	4.6	8
28	A localized surface acoustic wave applied spatiotemporally controllable chemical gradient generator. Biomicrofluidics, 2020, 14 , 024106.	2.4	3
29	Investigation of modified Lam \tilde{A} \otimes mode resonator with high coupling coefficient. Journal of Applied Physics, 2020, 127, .	2.5	4
30	Band structure, effective mass, and carrier mobility of few-layer $<$ i>h $<$ li>-AlN under layer and strain engineering. APL Materials, 2020, 8, .	5.1	28
31	Precursor engineering for performance enhancement of hole-transport-layer-free carbon-based MAPbBr3 perovskite solar cells. Journal of Alloys and Compounds, 2020, 832, 154902.	5.5	18
32	Profiling of immune–cancer interactions at the single-cell level using a microfluidic well array. Analyst, The, 2020, 145, 4138-4147.	3.5	17
33	Electronic Structure and Optical Properties of YAIN: A Firstâ€Principles Study. Physica Status Solidi (B): Basic Research, 2020, 257, 1900678.	1.5	5
34	Two dimensional graphitic carbon nitride quantum dots modified perovskite solar cells and photodetectors with high performances. Journal of Power Sources, 2020, 451, 227825.	7.8	44
35	Electrospun degradable Zn-Mn oxide hierarchical nanofibers for specific capture and efficient release of circulating tumor cells. Nanotechnology, 2020, 31, 495102.	2.6	6
36	Nozzle-free droplet generation with focused acoustic beams for encapsulation of single circulating tumor cells. Nano Futures, 2020, 4, 045001.	2.2	4

#	Article	IF	CITATIONS
37	Enhanced performance of piezoelectric nanogenerator based on aligned nanofibers and three-dimensional interdigital electrodes. Nano Energy, 2019, 65, 103924.	16.0	57
38	Biomimetic Immunomagnetic Nanoparticles with Minimal Nonspecific Biomolecule Adsorption for Enhanced Isolation of Circulating Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28732-28739.	8.0	49
39	An Acoustic Droplet-Induced Enzyme Responsive Platform for the Capture and On-Demand Release of Single Circulating Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41118-41126.	8.0	30
40	A Flexible Piezoelectric Nanogenerator Based on Aligned P(VDF-TrFE) Nanofibers. Micromachines, 2019, 10, 302.	2.9	26
41	Rapid and efficient isolation and detection of circulating tumor cells based on ZnS:Mn2+ quantum dots and magnetic nanocomposites. Talanta, 2019, 202, 230-236.	5.5	20
42	A Digital Acoustofluidic Pump Powered by Localized Fluid-Substrate Interactions. Analytical Chemistry, 2019, 91, 7097-7103.	6.5	32
43	Multifunctional Gelatin Nanoparticle Integrated Microchip for Enhanced Capture, Release, and Analysis of Circulating Tumor Cells. Particle and Particle Systems Characterization, 2019, 36, 1900076.	2.3	10
44	Capture and "self-release―of circulating tumor cells using metal–organic framework materials. Nanoscale, 2019, 11, 8293-8303.	5.6	25
45	Enhancing the performance of hole-conductor free carbon-based perovskite solar cells through rutile-phase passivation of anatase TiO2 scaffold. Journal of Power Sources, 2019, 422, 138-144.	7.8	37
46	TiO ₂ nanopillar arrays coated with gelatin film for efficient capture and undamaged release of circulating tumor cells. Nanotechnology, 2019, 30, 335101.	2.6	16
47	Cancer Stem Cellâ€Platelet Hybrid Membraneâ€Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Advanced Functional Materials, 2019, 29, 1807733.	14.9	137
48	Cancer Cell Membrane Camouflaged Nanoparticles to Realize Starvation Therapy Together with Checkpoint Blockades for Enhancing Cancer Therapy. ACS Nano, 2019, 13, 2849-2857.	14.6	253
49	The acoustofluidic focusing and separation of rare tumor cells using transparent lithium niobate transducers. Lab on A Chip, 2019, 19, 3922-3930.	6.0	26
50	A valveâ€based microfluidic device for onâ€chip single cell treatments. Electrophoresis, 2019, 40, 961-968.	2.4	18
51	Efficient Welding of Silver Nanowires embedded in a Poly(vinylidene fluoride) Film for Robust Wearable Electronics. Advanced Materials Technologies, 2019, 4, 1800438.	5.8	14
52	Enhanced isolation and release of fetal nucleated red blood cells using multifunctional nanoparticle-based microfluidic device for non-invasive prenatal diagnostics. Sensors and Actuators B: Chemical, 2019, 281, 131-138.	7.8	26
53	A Biomimetic Nanodecoy Traps Zika Virus To Prevent Viral Infection and Fetal Microcephaly Development. Nano Letters, 2019, 19, 2215-2222.	9.1	69
54	A digital acoustofluidic device for on-demand and oil-free droplet generation. Nanotechnology, 2019, 30, 084001.	2.6	18

#	Article	IF	CITATIONS
55	A hospital based retrospective study of factors influencing therapeutic leukapheresis in patients presenting with hyperleukocytic leukaemia. Scientific Reports, 2018, 8, 294.	3.3	10
56	Engineered red blood cells for capturing circulating tumor cells with high performance. Nanoscale, 2018, 10, 6014-6023.	5.6	44
57	An improved bulk acoustic waves chip based on a PDMS bonding layer for high-efficient particle enrichment. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	7
58	Efficient Capture and High Activity Release of Circulating Tumor Cells by Using TiO ₂ Nanorod Arrays Coated with Soluble MnO ₂ Nanoparticles. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 16327-16334.	8.0	46
59	Enhanced output-performance of piezoelectric poly(vinylidene fluoride trifluoroethylene) fibers-based nanogenerator with interdigital electrodes and well-ordered cylindrical cavities. Applied Physics Letters, 2018, 112, .	3.3	30
60	Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy. Nanotechnology, 2018, 29, 134004.	2.6	91
61	Plateletâ€Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Angewandte Chemie, 2018, 130, 998-1003.	2.0	18
62	A strong green fluorescent nanoprobe for highly sensitive and selective detection of nitrite ions based on phosphorus and nitrogen co-doped carbon quantum dots. Sensors and Actuators B: Chemical, 2018, 262, 555-561.	7.8	60
63	Plateletâ€Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Angewandte Chemie - International Edition, 2018, 57, 986-991.	13.8	132
64	Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. Nanotechnology, 2018, 29, 084002.	2.6	89
65	Size-amplified acoustofluidic separation of circulating tumor cells with removable microbeads. Nano Futures, 2018, 2, 025004.	2.2	21
66	Platelet–Leukocyte Hybrid Membraneâ€Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells. Advanced Functional Materials, 2018, 28, 1803531.	14.9	154
67	Early Cancer Diagnosis: Platelet–Leukocyte Hybrid Membraneâ€Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells (Adv. Funct. Mater. 34/2018). Advanced Functional Materials, 2018, 28, 1870241.	14.9	1
68	The Overall Release of Circulating Tumor Cells by Using Temperature Control and Matrix Metalloproteinase-9 Enzyme on Gelatin Film. ACS Applied Bio Materials, 2018, 1, 910-916.	4.6	8
69	Highly sensitive and rapid isolation of fetal nucleated red blood cells with microbead-based selective sedimentation for non-invasive prenatal diagnostics. Nanotechnology, 2018, 29, 434001.	2.6	20
70	Biocompatible fabrication of cell-laden calcium alginate microbeads using microfluidic double flow-focusing device. Sensors and Actuators A: Physical, 2018, 279, 313-320.	4.1	20
71	Improving the performance through SPR effect by employing Au@SiO2 core-shell nanoparticles incorporated TiO2 scaffold in efficient hole transport material free perovskite solar cells. Electrochimica Acta, 2018, 282, 10-15.	5.2	20
72	Antitumor Plateletâ€Mimicking Magnetic Nanoparticles. Advanced Functional Materials, 2017, 27, 1604774.	14.9	152

#	Article	IF	CITATIONS
73	Hydrothermal synthesis of TiO ₂ nanoparticles doped with trace amounts of strontium, and their application as working electrodes for dye sensitized solar cells: tunable electrical properties & enhanced photo-conversion performance. RSC Advances, 2017, 7, 2358-2364.	3.6	40
74	A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments. Lab on A Chip, 2017, 17, 1280-1286.	6.0	51
75	Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy. ACS Nano, 2017, 11, 3496-3505.	14.6	377
76	Theranostics: Antitumor Plateletâ€Mimicking Magnetic Nanoparticles (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
77	Janus droplet parallel arrangements using a simple Y-channel flow-focusing microfluidic device. Chemical Physics Letters, 2017, 673, 93-98.	2.6	9
78	Fetal nucleated red blood cell analysis for non-invasive prenatal diagnostics using a nanostructure microchip. Journal of Materials Chemistry B, 2017, 5, 226-235.	5.8	34
79	Effective capture and release of circulating tumor cells using core-shell Fe3O4@MnO2 nanoparticles. Chemical Physics Letters, 2017, 668, 35-41.	2.6	15
80	W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes. Journal of Power Sources, 2017, 342, 489-494.	7.8	71
81	Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging. ACS Applied Materials & Interfaces, 2017, 9, 2159-2168.	8.0	195
82	High frequency acoustic on-chip integration for particle characterization and manipulation in microfluidics. Applied Physics Letters, 2017, 111 , .	3.3	6
83	Significant Radiation Tolerance and Moderate Reduction in Thermal Transport of a Tungsten Nanofilm by Inserting Monolayer Graphene. Advanced Materials, 2017, 29, 1604623.	21.0	49
84	Effective cancer targeting and imaging using macrophage membraneâ€camouflaged upconversion nanoparticles. Journal of Biomedical Materials Research - Part A, 2017, 105, 521-530.	4.0	83
85	Efficient Purification and Release of Circulating Tumor Cells by Synergistic Effect of Biomarker and SiO ₂ @Gelâ€Microbeadâ€Based Size Difference Amplification. Advanced Healthcare Materials, 2016, 5, 1554-1559.	7.6	44
86	Ultraviolet-assisted microfluidic generation of ferroelectric composite particles. Biomicrofluidics, 2016, 10, 024106.	2.4	2
87	A flexible, wave-shaped P(VDF-TrFE)/metglas piezoelectric composite for wearable applications. Journal of Applied Physics, 2016, 120, .	2.5	31
88	Microfluidic synthesis of multiferroic Janus particles with disk-like compartments. Applied Physics Letters, 2016, 108, .	3.3	13
89	Three-dimensional valve-based controllable PDMS nozzle for dynamic modulation of droplet generation. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	11
90	Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2 film by solvent treatment. Journal of Power Sources, 2016, 319, 111-115.	7.8	46

#	Article	IF	Citations
91	Application of mesoporous SiO2 layer as an insulating layer in high performance hole transport material free CH3NH3PbI3 perovskite solar cells. Journal of Power Sources, 2016, 321, 71-75.	7.8	46
92	Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells. Journal of Power Sources, 2016, 332, 24-29.	7.8	58
93	One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe ³⁺ & Cl ^{â^²} co-mediated polyol method and their application as transparent conductive films. Nanoscale, 2016, 8, 18121-18133.	5.6	66
94	Contrasting room-temperature hydrogen sensing capabilities of Pt-SnO2 and Pt-TiO2 composite nanoceramics. Nano Research, 2016, 9, 3528-3535.	10.4	22
95	Autofluorescent gelatin nanoparticles as imaging probes to monitor matrix metalloproteinase metabolism of cancer cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 2854-2860.	4.0	25
96	Photocatalytic Degradation of Cell Membrane Coatings for Controlled Drug Release. Advanced Healthcare Materials, 2016, 5, 1420-1427.	7.6	49
97	Cancer Cell Membraneâ€Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging. Advanced Materials, 2016, 28, 3460-3466.	21.0	420
98	The Study for Solution-Processed Alkali Metal-Doped Indium–Zinc Oxide Thin-Film Transistors. IEEE Electron Device Letters, 2016, 37, 50-52.	3.9	21
99	Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors. ACS Applied Materials & Diterfaces, 2016, 8, 7862-7868.	8.0	76
100	Transparent megahertz circuits from solution-processed composite thin films. Nanoscale, 2016, 8, 7978-7983.	5.6	3
101	Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake. Nanotechnology, 2016, 27, 085106.	2.6	99
102	A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells: design and characterization. Nanoscale, 2016, 8, 5847-5851.	5.6	25
103	Highly sensitive microfluidic flow sensor based on aligned piezoelectric poly(vinylidene) Tj ETQq1 1 0.784314 rgBT	JOverlock	₹ 10 Tf 50 2 21
104	Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance. Small, 2015, 11, 6225-6236.	10.0	353
105	A Concentration-Controllable Microfluidic Droplet Mixer for Mercury Ion Detection. Micromachines, 2015, 6, 915-925.	2.9	3
106	Hierarchical donut-shaped LiMn ₂ O ₄ as an advanced cathode material for lithium-ion batteries with excellent rate capability and long cycle life. Journal of Materials Chemistry A, 2015, 3, 8165-8170.	10.3	32
107	Self-amplified piezoelectric nanogenerator with enhanced output performance: The synergistic effect of micropatterned polymer film and interweaved silver nanowires. Applied Physics Letters, 2015, 106, .	3.3	24
108	One-step fabrication of 3D silver paste electrodes into microfluidic devices for enhanced droplet-based cell sorting. AIP Advances, 2015, 5, .	1.3	24

#	Article	IF	Citations
109	Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation. Light: Science and Applications, 2015, 4, e342-e342.	16.6	178
110	A novel glowing electrolyte based on perylene accompany with spectrum compensation function for efficient dye sensitized solar cells. Journal of Power Sources, 2015, 280, 430-434.	7.8	8
111	Multifunctional alumina/titania hybrid blocking layer modified nanocrystalline titania films as efficient photoanodes in dye sensitized solar cells. Journal of Power Sources, 2015, 282, 596-601.	7.8	38
112	A general strategy to construct uniform carbon-coated spinel LiMn ₂ O ₄ nanowires for ultrafast rechargeable lithium-ion batteries with a long cycle life. Nanoscale, 2015, 7, 13173-13180.	5.6	33
113	Capture and release of cancer cells using electrospun etchable MnO2 nanofibers integrated in microchannels. Applied Physics Letters, 2015, 106, .	3.3	41
114	A microfluidic electrostatic separator based on pre-charged droplets. Sensors and Actuators B: Chemical, 2015, 210, 328-335.	7.8	24
115	Capture and Release of Cancer Cells by Combining On-Chip Purification and Off-Chip Enzymatic Treatment. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24001-24007.	8.0	55
116	Constructed Single-Crystal Rutile TiO2 Cluster and Plasmon Synergistic Effect for Dye-Sensitized Solar Cells. Electrochimica Acta, 2015, 180, 705-711.	5.2	8
117	Modulating the threshold voltage of oxide nanowire field-effect transistors by a Ga+ ion beam. Nano Research, 2014, 7, 1691-1698.	10.4	20
118	Generation of BiFeO3-Fe3O4 Janus particles based on droplet microfluidic method. Applied Physics Letters, 2014, 105, .	3.3	11
119	Transparent, Highâ€Performance Thinâ€Film Transistors with an InGaZnO/Alignedâ€5nO ₂ â€Nanowire Composite and their Application in Photodetectors. Advanced Materials, 2014, 26, 7399-7404.	21.0	104
120	Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering. Applied Physics Letters, 2014, 105, 211902.	3.3	14
121	Constructing hierarchical fastener-like spheres from anatase TiO2 nanosheets with exposed {001} facets for high-performance dye-sensitized solar cells. Journal of Power Sources, 2014, 262, 86-92.	7.8	31
122	Enhance the performance of dye-sensitized solar cells by balancing the light harvesting and electron collecting efficiencies of scattering layer based photoanodes. Electrochimica Acta, 2014, 132, 25-30.	5.2	15
123	Disk-like hydrogel bead-based immunofluorescence staining toward identification and observation of circulating tumor cells. Microfluidics and Nanofluidics, 2014, 16, 29-37.	2.2	21
124	Scalable Integration of Indium Zinc Oxide/Photosensitiveâ€Nanowire Composite Thinâ€Film Transistors for Transparent Multicolor Photodetectors Array. Advanced Materials, 2014, 26, 2919-2924.	21.0	62
125	Capture and Release of Cancer Cells Based on Sacrificeable Transparent MnO ₂ Nanospheres Thin Film. Advanced Healthcare Materials, 2014, 3, 1420-1425.	7.6	38
126	Ordered mesoporous carbon-decorated reduced graphene oxide as efficient counter electrode for dye-sensitized solar cells. Carbon, 2014, 77, 18-24.	10.3	25

#	Article	IF	CITATIONS
127	Upconversion induced enhancement of dye sensitized solar cells based on core–shell structured β-NaYF ₄ :Er ³⁺ , Yb ³⁺ @SiO ₂ nanoparticles. Nanoscale, 2014, 6, 2052-2055.	5.6	60
128	"Rings of saturn-like―nanoarrays with high number density of hot spots for surface-enhanced Raman scattering. Applied Physics Letters, 2014, 105, 033515.	3.3	21
129	Efficient dye-sensitized solar cells employing highly environmentally-friendly ubiquinone 10 based I2-free electrolyte inspired by photosynthesis. Journal of Materials Chemistry A, 2014, 2, 9007-9010.	10.3	14
130	Self-Assembled Free-Standing Polypyrrole Nanotube Membrane as an Efficient FTO- and Pt-Free Counter Electrode for Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14-17.	8.0	84
131	Introducing an Intermediate Band into Dye-Sensitized Solar Cells by W ⁶⁺ Doping into TiO ₂ Nanocrystalline Photoanodes. Journal of Physical Chemistry C, 2014, 118, 16892-16895.	3.1	33
132	Layer-by-Layer Self-Assembly of TiO2 Hierarchical Nanosheets with Exposed {001} Facets As an Effective Bifunctional Layer for Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9144-9149.	8.0	39
133	The preparation and characterization of 1D multiferroic BFO/P(VDF-TrFE) composite nanofibers using electrospinning. Materials Letters, 2014, 130, 157-159.	2.6	15
134	Morphology transformations in tetrabutyl titanate–acetic acid system and sub-micron/micron hierarchical TiO2 for dye-sensitized solar cells. Journal of Power Sources, 2013, 242, 848-854.	7.8	28
135	Photoelectrodes modification by N doping for dye-sensitized solar cells. Electrochimica Acta, 2013, 93, 202-206.	5.2	28
136	Effect of HAc treatment on an open-environment prepared organic redox couple based on hydroquinone/benzoquinone and its application in dye-sensitized solar cells. Electrochimica Acta, 2013, 107, 695-700.	5.2	9
137	An efficient PDPPTPT:PC61BM-based tandem polymer solar cells with a Ca/Ag/MoO3 intermediate layer. Solar Energy Materials and Solar Cells, 2013, 113, 135-139.	6.2	14
138	Effects of Bis(imidazolium) Molten Salts with Different Substituents of Imidazolium Cations on the Performance of Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3356-3361.	8.0	25
139	Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes. Journal of Power Sources, 2013, 224, 168-173.	7.8	72
140	Lab-on-a-chip for high frequency acoustic characterization. Sensors and Actuators B: Chemical, 2013, 177, 753-760.	7.8	7
141	Gelatin–mesoporous silica nanoparticles as matrix metalloproteinases-degradable drug delivery systems in vivo. Microporous and Mesoporous Materials, 2013, 182, 165-172.	4.4	88
142	Enhanced electrical properties of composite nanostructures using BiFeO3 nanotubes and ferroelectric copolymers. Materials Letters, 2013, 94, 183-185.	2.6	10
143	High performance amorphous ZnMgO/carbon nanotube composite thin-film transistors with a tunable threshold voltage. Nanoscale, 2013, 5, 2830.	5.6	10
144	Highly Uniform, Bifunctional Core/Doubleâ€Shellâ€Structured βâ€NaYF ₄ :Er ³⁺ , Yb ³⁺ @ SiO ₂ @TiO ₂ Hexagonal Subâ€microprisms for Highâ€Performance Dye Sensitized Solar Cells. Advanced Materials, 2013, 25, 2174-2180.	21.0	221

#	Article	IF	Citations
145	Magnetoâ€Controllable Capture and Release of Cancer Cells by Using a Micropillar Device Decorated with Graphite Oxideâ€Coated Magnetic Nanoparticles. Small, 2013, 9, 3895-3901.	10.0	87
146	Hierarchically porous hybrids of polyaniline nanoparticles anchored on reduced graphene oxide sheets as counter electrodes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 2762.	10.3	64
147	Biocompatible TiO2 nanoparticle-based cell immunoassay for circulating tumor cells capture and identification from cancer patients. Biomedical Microdevices, 2013, 15, 617-626.	2.8	66
148	Direct tri-constituent co-assembly of highly ordered mesoporous carbon counter electrode for dye-sensitized solar cells. Nanoscale, 2013, 5, 337-341.	5.6	53
149	Supramolecular gelatin nanoparticles as matrix metalloproteinase responsive cancer cell imaging probes. Chemical Communications, 2013, 49, 4462.	4.1	64
150	A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell. Journal of Power Sources, 2013, 221, 78-83.	7.8	136
151	Understanding the phase separation evolution in efficient P3HT : IC ₇₀ BA-based bulk-heterojunction polymer solar cells. Journal Physics D: Applied Physics, 2013, 46, 055502.	2.8	3
152	High mobility amorphous InGaZnO thin film transistor with single wall carbon nanotubes enhanced-current path. Applied Physics Letters, 2013, 103, 223108.	3.3	17
153	Generation of disk-like hydrogel beads for cell encapsulation and manipulation using a droplet-based microfluidic device. Microfluidics and Nanofluidics, 2012, 13, 761-767.	2.2	51
154	Rational Design of Amorphous Indium Zinc Oxide/Carbon Nanotube Hybrid Film for Unique Performance Transistors. Nano Letters, 2012, 12, 3596-3601.	9.1	83
155	Electrospun TiO ₂ Nanofiberâ€Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients. Advanced Materials, 2012, 24, 2756-2760.	21.0	315
156	Assays: Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients (Adv. Mater. 20/2012). Advanced Materials, 2012, 24, 2755-2755.	21.0	3
157	A low cost mesoporous carbon/SnO2/TiO2 nanocomposite counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2012, 201, 402-407.	7.8	64
158	Synergistic effects of ZnO compact layer and TiCl4 post-treatment for dye-sensitized solar cells. Journal of Power Sources, 2012, 204, 257-264.	7.8	52
159	Integrated parallel microfluidic device for simultaneous preparation of multiplex optical-encoded microbeads with distinct quantum dot barcodes. Journal of Materials Chemistry, 2011, 21, 13380.	6.7	34
160	Integrated Microdevice for Long-Term Automated Perfusion Culture without Shear Stress and Real-Time Electrochemical Monitoring of Cells. Analytical Chemistry, 2011, 83, 9524-9530.	6.5	29
161	Rapid purification of cell encapsulated hydrogel beads from oil phase to aqueous phase in a microfluidic device. Lab on A Chip, 2011, 11, 4117.	6.0	40
162	On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system. Lab on A Chip, 2011, 11, 2561.	6.0	65

#	Article	IF	CITATIONS
163	One port contour-mode ZnO piezoelectric MEMS resonator. Microelectronic Engineering, 2011, 88, 3003-3010.	2.4	7
164	Valve-based microfluidic droplet micromixer and mercury (II) ion detection. Sensors and Actuators A: Physical, 2011, 172, 546-551.	4.1	16
165	Milliseconds mixing in microfluidic channel using focused surface acoustic wave. Sensors and Actuators B: Chemical, 2011, 160, 1552-1556.	7.8	58
166	The effect of interfacial tension on droplet formation in flow-focusing microfluidic device. Biomedical Microdevices, 2011, 13, 559-564.	2.8	68
167	A novel method for generation of amphiphilic PDMS particles by selective modification. Microfluidics and Nanofluidics, 2011, 10, 453-458.	2.2	11
168	Controllable fission of droplets and bubbles by pneumatic valve. Microfluidics and Nanofluidics, 2011, 10, 1343-1349.	2.2	8
169	Controllable synthesis of flake-like Al-doped ZnO nanostructures and its application in inverted organic solar cells. Nanoscale Research Letters, 2011, 6, 546.	5.7	18
170	Rapid microparticle patterning by enhanced dielectrophoresis effect on a doubleâ€layer electrode substrate. Electrophoresis, 2011, 32, 3371-3377.	2.4	4
171	Realization of planar mixing by chaotic velocity in microfluidics. Microelectronic Engineering, 2011, 88, 959-963.	2.4	18
172	Controlling the transmission of ultrahigh frequency bulk acoustic waves in silicon by $45\hat{A}^\circ$ mirrors. Ultrasonics, 2011, 51, 532-538.	3.9	5
173	Generation of alginate gel particles with AuNPs layers by polydimethylsiloxan template. Biomicrofluidics, 2011, 5, 026502.	2.4	5
174	A microfluidic system with embedded acoustic wave sensor for in situ detection of dynamic fluidic properties. Microelectronic Engineering, 2010, 87, 658-662.	2.4	5
175	Microstructures, surface bonding states and room temperature ferromagnetisms of Zn0.95Co0.05O thin films doped with copper. Applied Surface Science, 2010, 256, 3669-3675.	6.1	30
176	A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells. Biosensors and Bioelectronics, 2010, 26, 935-939.	10.1	36
177	Valve-based microfluidic device for droplet on-demand operation and static assay. Applied Physics Letters, 2010, 97, .	3.3	47
178	Droplet electric separator microfluidic device for cell sorting. Applied Physics Letters, 2010, 96, .	3.3	78
179	Size-induced metal-to-semiconductor transition and room temperature sequential resonant tunneling in La0.5Sr0.5CoO3â^Î quantum dots embedded in La0.5Sr0.5CoO3â^Î nanotubes. Applied Physics Letters, 2009, 95, 083125.	3.3	1
180	Effect of annealing temperature on microstructure, optical and electrical properties of sputtered Ba0.9Sr0.1TiO3 thin films. Applied Surface Science, 2009, 255, 9045-9053.	6.1	13

#	Article	IF	Citations
181	Preparation and Characterization of Ordered Pb(Zr _{0.53} Ti _{0.47})O ₃ Nanotube Arrays by Sol-Gel Template Method. Advanced Materials Research, 2009, 79-82, 361-364.	0.3	O
182	Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. Lab on A Chip, 2009, 9, 2981.	6.0	105
183	Numerical calculations of field enhancement and field amplification factors for a vertical carbon nanotube in parallel-plate geometry. Diamond and Related Materials, 2009, 18, 1381-1386.	3.9	20
184	Effect of CoFe2O4 content on the dielectric and magnetoelectric properties in Pb(ZrTi)O3/CoFe2O4 composite. Journal of Electroceramics, 2008, 21, 398-400.	2.0	33
185	A strong correlation of crystal structure and Curie point of barium titanate ceramics with Ba/Ti ratio of precursor composition. Physica B: Condensed Matter, 2008, 403, 660-663.	2.7	25
186	Effect of patterned micro-magnets on superparamagnetic beads in microchannels. Journal Physics D: Applied Physics, 2008, 41, 105008.	2.8	14
187	Ultrasonic particle trapping in microfluidic devices using soft lithography. Applied Physics Letters, 2008, 92, .	3.3	13
188	Integration of ultrasonic transducers in fast prototyping microfluidic devices. Journal of Applied Physics, 2008, 103, .	2.5	8
189	Fabrication and characterization of Niâ^•P(VDF-TrFE) nanoscaled coaxial cables. Applied Physics Letters, 2007, 90, 253107.	3 . 3	13
190	Response of Superparamagnetic Beads and Orientation of Magnetotactic Bacteria in an Integrated Microfluidic Chip., 2007,,.		0
191	Integration of minisolenoids in microfluidic device for magnetic bead–based immunoassays. Journal of Applied Physics, 2007, 102, 084911.	2.5	21
192	A micropillarâ€integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis, 2007, 28, 4713-4722.	2.4	77
193	Characterization of microfluidic fuel cell based on multiple laminar flow. Microelectronic Engineering, 2007, 84, 1182-1185.	2.4	92
194	Fabrication of integrated patterns using lithography and particles assembling techniques. Microelectronic Engineering, 2007, 84, 1471-1475.	2.4	3
195	Effect of K-doping on the dielectric and tunable properties of Ba0.6Sr0.4TiO3 thin films prepared by RF magnetron sputtering. Journal of Crystal Growth, 2007, 306, 22-26.	1.5	11
196	Thermal study on structural changes and phase transition in high-energy electron-irradiated blends of P(VDF–TrFE) copolymers. Journal of Materials Science, 2007, 42, 1184-1189.	3.7	4
197	Patterning of hydrophilic micro arrays with superhydrophobic surrounding zones. Microelectronic Engineering, 2007, 84, 1673-1676.	2.4	18
198	Response of super-paramagnetic beads in microfluidic devices with integrated magnetic micro-columns. Microelectronic Engineering, 2006, 83, 1655-1659.	2.4	19

#	Article	IF	Citations
199	The influence of Mg doping on the dielectric and tunable properties of (Ba0.6Sr0.4)0.925K0.075TiO3 thin films fabricated by sol–gel method. Journal of Crystal Growth, 2006, 290, 121-126.	1.5	13
200	Growth of (001) oriented La0.5Sr0.5CoO3 films directly on SiO2/Si substrate by pulsed laser deposition. Thin Solid Films, 2006, 497, 329-332.	1.8	5
201	FINITE ELEMENT ANALYSIS OF UNDERWATER CYMBAL TRANSDUCERS WITH LARGE DISPLACEMENT AND FAST RESPONSE TIME. Integrated Ferroelectrics, 2006, 78, 103-111.	0.7	2
202	Enhanced magnetoelectric effect in Terfenol-D and flextensional cymbal laminates. Applied Physics Letters, 2006, 88, 182906.	3.3	34
203	THE EFFECT OF GEOMETRY ON THE DISPLACEMENT AMPLIFICATION AND RESONANCE CHARACTERISTICS OF THE CYMBAL TRANSDUCERS. Integrated Ferroelectrics, 2006, 80, 383-393.	0.7	1
204	Effect of Thickness on the Structure and Properties of ZnO Thin Films Prepared by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2006, 45, 7860-7865.	1.5	58
205	Displacement amplification and resonance characteristics of the cymbal transducers. Sensors and Actuators A: Physical, 2005, 121, 213-220.	4.1	28
206	Thermal and structural properties of high-energy electron irradiated poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock	19.Tf 50	462 Td (fluori
207	Relaxor ferroelectric behavior and structural evaluation in electron-irradiated P (vinylidene) Tj ETQq1 1 0.784314	rgBI /Ove	erlock 10 Tf 50
208	Dielectric relaxation study in electron-irradiated ferroelectric poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 Physics, 2005, 43, 2972-2980.	50 387 Td 2.1	(fluoride-triflu 4
209	Structural changes and phase behavior of electron-irradiated poly(vinylidene-trifluoroethylene) copolymers. Materials Chemistry and Physics, 2004, 83, 298-306.	4.0	4
210	High electrostriction and relaxor ferroelectric behavior in proton-irradiated poly(vinylidene) Tj ETQq0 0 0 rgBT /Ov	verlock 10) Tf ₁₅ 0 302 Td
211	Thermally stimulated depolarization current in electron-irradiated poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Ov Physics, 2004, 42, 1099-1105.	erlock 10 2.1	Tf 50 267 Td 2
212	Structural changes of 80/20 poly(vinylidene fluoride-trifluoroethylene) copolymer induced by electron irradiation. Journal of Applied Polymer Science, 2004, 91, 2903-2907.	2.6	2
213	Leakage current and relaxation characteristics of electron-irradiated poly(vinylidene) Tj ETQq $1\ 1\ 0.784314\ rgBT$ /	Overlock 2.6	10 ₃ Tf 50 182
214	A thermal study on phase transition of high-energy electron-irradiated P(VDF–TrFE) 80/20 mol% copolymers. Materials Chemistry and Physics, 2003, 81, 166-173.	4.0	5
215	Ultrasonic transducers using electron-irradiated vinylidene fluoride-trifluoroethylene copolymers. Ultrasonics, 2003, 41, 223-228.	3.9	3
216	Structural evolution and dielectric relaxation behavior of electron-irradiated poly(vinylidene) Tj ETQq0 0 0 rgBT /C	Overlock 1 2.5	.0 Т <u>f</u> 50 62 Td

#	Article	IF	CITATIONS
217	Reversible phase transition and structure memory effect of metastable phase in electron-irradiated poly(vinylidene-fluoride-trifluoroethyline) copolymers. Applied Physics Letters, 2003, 82, 2136-2138.	3.3	9
218	Factors affecting the performance of the bimorph-based dilatometer for field induced strain measurement of polymer films. Review of Scientific Instruments, 2003, 74, 1285-1291.	1.3	1
219	Phase transition induced by thermal and electric fields in electron-irradiated poly (vinylidene) Tj ETQq1 1 0.78431	4 rgBT /0 2:8	Oveglock 10 Th
220	Effect of \hat{I}^3 -ray radiation on structure of P(VDF/TrFE) 80/20 mol% copolymers. European Polymer Journal, 2001, 37, 471-474.	5.4	15