
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1057916/publications.pdf Version: 2024-02-01

Ιιμγιινι Ηονις

#	Article	IF	CITATIONS
1	Bi ₂ O ₃ /BiO ₂ Nanoheterojunction for Highly Efficient Electrocatalytic CO ₂ Reduction to Formate. Nano Letters, 2022, 22, 1656-1664.	9.1	72
2	Exceptionally increased reversible capacity of O3-type NaCrO2 cathode by preventing irreversible phase transition. Energy Storage Materials, 2022, 46, 289-299.	18.0	17
3	Stimulating Cu–Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors. Energy and Environmental Science, 2022, 15, 2889-2899.	30.8	63
4	Liâ€Rich Mn–Mg Layered Oxide as a Novel Ni″Coâ€Free Cathode. Advanced Functional Materials, 2022, 32, .	14.9	13
5	Hydrogen storage behavior and microstructural feature of a TiFe–ZrCr2 alloy. Journal of Alloys and Compounds, 2021, 853, 157099.	5.5	22
6	Effect of Cr Addition on Magnetic Properties and Corrosion Resistance of Optimized Co and Fe-Based Amorphous Alloys. Metals, 2021, 11, 304.	2.3	6
7	Fictitious phase separation in Li layered oxides driven by electro-autocatalysis. Nature Materials, 2021, 20, 991-999.	27.5	101
8	Activation of Ti–Fe–Cr alloys containing identical AB2 fractions. Journal of Alloys and Compounds, 2021, 864, 158876.	5.5	20
9	Weakly Solvating Solution Enables Chemical Prelithiation of Graphite–SiO _{<i>x</i>} Anodes for High-Energy Li-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 9169-9176.	13.7	106
10	Critical Role of Ti ⁴⁺ in Stabilizing Highâ€Voltage Redox Reactions in Liâ€Rich Layered Material. Small, 2021, 17, e2100840.	10.0	13
11	Na ₂ Fe ₂ F ₇ : a fluoride-based cathode for high power and long life Na-ion batteries. Energy and Environmental Science, 2021, 14, 1469-1479.	30.8	16
12	Selective Anionic Redox and Suppressed Structural Disordering Enabling Highâ€Energy and Longâ€Life Liâ€Rich Layeredâ€Oxide Cathode. Advanced Energy Materials, 2021, 11, 2102311.	19.5	25
13	Galvanostatic Intermittent Titration Technique Reinvented: Part II. Experiments. Journal of the Electrochemical Society, 2021, 168, 120503.	2.9	10
14	Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities. Journal of Power Sources, 2020, 472, 228334.	7.8	27
15	Innentitelbild: Molecularly Tailored Lithium–Arene Complex Enables Chemical Prelithiation of High apacity Lithiumâ€ion Battery Anodes (Angew. Chem. 34/2020). Angewandte Chemie, 2020, 132, 14270-14270.	2.0	0
16	Exceptionally high-energy tunnel-type V1.5Cr0.5O4.5H nanocomposite as a novel cathode for Na-ion batteries. Nano Energy, 2020, 77, 105175.	16.0	10
17	Highâ€Voltageâ€Driven Surface Structuring and Electrochemical Stabilization of Niâ€Rich Layered Cathode Materials for Li Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2000521.	19.5	90
18	Molecularly Tailored Lithium–Arene Complex Enables Chemical Prelithiation of Highâ€Capacity Lithiumâ€Ion Battery Anodes. Angewandte Chemie - International Edition, 2020, 59, 14473-14480.	13.8	127

#	Article	IF	CITATIONS
19	Redoxâ€Active Organic Compounds for Future Sustainable Energy Storage System. Advanced Energy Materials, 2020, 10, 2001445.	19.5	139
20	Utilizing Latent Multiâ€Redox Activity of pâ€Type Organic Cathode Materials toward High Energy Density Lithiumâ€Organic Batteries. Advanced Energy Materials, 2020, 10, 2001635.	19.5	47
21	Molecularly Tailored Lithium–Arene Complex Enables Chemical Prelithiation of Highâ€Capacity Lithiumâ€ion Battery Anodes. Angewandte Chemie, 2020, 132, 14581-14588.	2.0	20
22	A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy and Environmental Science, 2020, 13, 1269-1278.	30.8	39
23	Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nature Materials, 2019, 18, 256-265.	27.5	280
24	Charge-transfer complexes for high-power organic rechargeable batteries. Energy Storage Materials, 2019, 20, 462-469.	18.0	70
25	The role of substituents in determining the redox potential of organic electrode materials in Li and Na rechargeable batteries: electronic effects <i>vs.</i> substituent-Li/Na ionic interaction. Journal of Materials Chemistry A, 2019, 7, 11438-11443.	10.3	33
26	Suppression of Voltage Decay through Manganese Deactivation and Nickel Redox Buffering in Highâ€Energy Layered Lithiumâ€Rich Electrodes. Advanced Energy Materials, 2018, 8, 1800606.	19.5	97
27	Fluid-enhanced surface diffusion controls intraparticle phase transformations. Nature Materials, 2018, 17, 915-922.	27.5	104
28	Multi-redox Molecule for High-Energy Redox Flow Batteries. Joule, 2018, 2, 1771-1782.	24.0	123
29	Understanding Chemomechanical Li-ion Cathode Degradation through Multi-Scale, Multi-Modal X-ray Spectromicroscopy. Microscopy and Microanalysis, 2018, 24, 426-427.	0.4	2
30	Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nature Energy, 2017, 2, .	39.5	94
31	Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chemistry, 2017, 19, 2980-2985.	9.0	139
32	High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nature Energy, 2017, 2, 861-868.	39.5	372
33	Trackable galvanostatic history in phase separation based electrodes for lithium-ion batteries: a mosaic sub-grouping intercalation model. Energy and Environmental Science, 2017, 10, 2352-2364.	30.8	5
34	Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nature Communications, 2017, 8, 2091.	12.8	469
35	Highly Stable Iron- and Manganese-Based Cathodes for Long-Lasting Sodium Rechargeable Batteries. Chemistry of Materials, 2016, 28, 7241-7249.	6.7	66
36	Thermal structural stability of a multi-component olivine electrode for lithium ion batteries. CrystEngComm, 2016, 18, 7463-7470.	2.6	5

#	Article	IF	CITATIONS
37	Rational design of redox mediators for advanced Li–O2 batteries. Nature Energy, 2016, 1, .	39.5	321
38	Sodium Storage Behavior in Natural Graphite using Etherâ€based Electrolyte Systems. Advanced Functional Materials, 2015, 25, 534-541.	14.9	625
39	Energy Storage: Sodium Storage Behavior in Natural Graphite using Ether-based Electrolyte Systems (Adv. Funct. Mater. 4/2015). Advanced Functional Materials, 2015, 25, 652-652.	14.9	3
40	Sodium intercalation chemistry in graphite. Energy and Environmental Science, 2015, 8, 2963-2969.	30.8	369
41	High Energy Organic Cathode for Sodium Rechargeable Batteries. Chemistry of Materials, 2015, 27, 7258-7264.	6.7	160
42	Review—Lithium-Excess Layered Cathodes for Lithium Rechargeable Batteries. Journal of the Electrochemical Society, 2015, 162, A2447-A2467.	2.9	141
43	Understanding the Degradation Mechanisms of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Material in Lithium Ion Batteries. Advanced Energy Materials, 2014, 4, 1300787.	19.5	893
44	Superior Rechargeability and Efficiency of Lithium–Oxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst. Angewandte Chemie - International Edition, 2014, 53, 3926-3931.	13.8	407
45	Recent progress on flexible lithium rechargeable batteries. Energy and Environmental Science, 2014, 7, 538-551.	30.8	355
46	Novel transition-metal-free cathode for high energy and power sodium rechargeable batteries. Nano Energy, 2014, 4, 97-104.	16.0	71
47	Biologically inspired pteridine redox centres for rechargeable batteries. Nature Communications, 2014, 5, 5335.	12.8	254
48	lon-Exchange Mechanism of Layered Transition-Metal Oxides: Case Study of LiNi _{0.5} Mn _{0.5} O ₂ . Inorganic Chemistry, 2014, 53, 8083-8087.	4.0	43
49	Aqueous Rechargeable Li and Na Ion Batteries. Chemical Reviews, 2014, 114, 11788-11827.	47.7	1,183
50	Lithiumâ€lon Batteries: Organic Nanohybrids for Fast and Sustainable Energy Storage (Adv. Mater.) Tj ETQq0 0 (0 rgBT /Ov 21.0	erlock 10 Tf 5
51	Organic Nanohybrids for Fast and Sustainable Energy Storage. Advanced Materials, 2014, 26, 2558-2565.	21.0	210
52	Anti-Site Reordering in LiFePO ₄ : Defect Annihilation on Charge Carrier Injection. Chemistry of Materials, 2014, 26, 5345-5351.	6.7	52
53	Highâ€Performance Hybrid Supercapacitor Based on Grapheneâ€Wrapped Li ₄ Ti ₅ O ₁₂ and Activated Carbon. ChemElectroChem, 2014, 1, 125-130.	3.4	137

54Extremely High Yield Conversion from Lowâ€Cost Sand to Highâ€Capacity Si Electrodes for Liâ€Ion Batteries.
Advanced Energy Materials, 2014, 4, 1400622.19.575

#	Article	IF	CITATIONS
55	All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Scientific Reports, 2014, 4, 5278.	3.3	185
56	Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries. Scientific Reports, 2013, 3, 1506.	3.3	84
57	Factors that Affect the Phase Behavior of Multi-Component Olivine (LiFe <i>_x</i> Mn <i>_y</i> Co _{1-<i>x</i>/i><} PO ₄ ; 0) Tj ETQ Reaction. Journal of the Electrochemical Society. 2013. 160. A444-A448.	q110.78	4314 rgBT 16
58	Toward a Lithium–"Air―Battery: The Effect of CO ₂ on the Chemistry of a Lithium–Oxygen Cell. Journal of the American Chemical Society, 2013, 135, 9733-9742.	13.7	307
59	Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energyâ€Storage Compound. Angewandte Chemie - International Edition, 2013, 52, 8322-8328.	13.8	147
60	Titelbild: Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound (Angew. Chem. 32/2013). Angewandte Chemie, 2013, 125, 8329-8329.	2.0	1
61	Thermal stability of Fe–Mn binary olivine cathodes for Li rechargeable batteries. Journal of Materials Chemistry, 2012, 22, 11964.	6.7	43
62	Multicomponent Effects on the Crystal Structures and Electrochemical Properties of Spinel-Structured M ₃ O ₄ (M = Fe, Mn, Co) Anodes in Lithium Rechargeable Batteries. Chemistry of Materials, 2012, 24, 720-725.	6.7	138
63	Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries. Chemistry of Materials, 2012, 24, 2692-2697.	6.7	255
64	Energy storage in composites of a redox couple host and a lithium ion host. Nano Today, 2012, 7, 168-173.	11.9	44
65	Synthesis of graphene-wrapped CuO hybrid materials by CO2 mineralization. Green Chemistry, 2012, 14, 2391.	9.0	53
66	The potential for long-term operation of a lithium–oxygen battery using a non-carbonate-based electrolyte. Chemical Communications, 2012, 48, 8374.	4.1	100
67	Polymorphism and phase transformations of Li2â^'xFeSiO4(0⩽x⩽2) from first principles. Physical Review 1 2011, 84, .	3, _{3.2}	35
68	Graphene-Based Hybrid Electrode Material for High-Power Lithium-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A930.	2.9	44
69	Invited paper: Preparation and electrochemical characterization of doped spinel LiMn1.88Ge0.1Li0.02O4 cathode material. Electronic Materials Letters, 2011, 7, 105-108.	2.2	9
70	Electrochemical and ex-situ analysis on manganese oxide/graphene hybrid anode for lithium rechargeable batteries. Journal of Materials Research, 2011, 26, 2665-2671.	2.6	39
71	Noncovalent functionalization of graphene with end-functional polymers. Journal of Materials Chemistry, 2010, 20, 1907.	6.7	553
72	Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. Journal of Materials Chemistry, 2010, 20, 10179.	6.7	211