
Gavin Hudson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1057908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Astrocytic Changes in Mitochondrial Oxidative Phosphorylation Protein Levels in Parkinson's Disease. Movement Disorders, 2022, 37, 302-314.	2.2	14
2	<scp><i>GBA</i></scp> and <scp><i>APOE</i></scp> Impact Cognitive Decline in Parkinson's Disease: A 10‥ear Populationâ€Based Study. Movement Disorders, 2022, 37, 1016-1027.	2.2	45
3	Interactions between nuclear and mitochondrial SNPs and Parkinson's disease risk. Mitochondrion, 2022, 63, 85-88.	1.6	6
4	A subcellular cookie cutter for spatial genomics in human tissue. Analytical and Bioanalytical Chemistry, 2022, 414, 5483-5492.	1.9	6
5	Heteroplasmic mitochondrial DNA variants in cardiovascular diseases. PLoS Genetics, 2022, 18, e1010068.	1.5	19
6	Mitochondrial DNA Damage and Brain Aging in Human Immunodeficiency Virus. Clinical Infectious Diseases, 2021, 73, e466-e473.	2.9	23
7	Neuropathological and biochemical investigation of Hereditary Ferritinopathy cases with ferritin light chain mutation: Prominent protein aggregation in the absence of major mitochondrial or oxidative stress. Neuropathology and Applied Neurobiology, 2021, 47, 26-42.	1.8	7
8	The Isolation and Deep Sequencing of Mitochondrial DNA. Methods in Molecular Biology, 2021, 2277, 433-447.	0.4	3
9	The genetics of mitochondrial disease: dissecting mitochondrial pathology using multiâ€omic pipelines. Journal of Pathology, 2021, 254, 430-442.	2.1	33
10	Maternal germline factors associated with aneuploid pregnancy loss: a systematic review. Human Reproduction Update, 2021, 27, 866-884.	5.2	17
11	Imaging mass cytometry reveals generalised deficiency in OXPHOS complexes in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 39.	2.5	17
12	The Human Coronavirus Receptor <scp>ANPEP</scp> (<scp>CD13</scp>) Is Overexpressed in Parkinson's Disease. Movement Disorders, 2020, 35, 2134-2136.	2.2	4
13	Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis. Nature Cancer, 2020, 1, 976-989.	5.7	69
14	Post-mortem ventricular cerebrospinal fluid cell-free-mtDNA in neurodegenerative disease. Scientific Reports, 2020, 10, 15253.	1.6	14
15	Whole-genome sequencing of patients with rare diseases in a national health system. Nature, 2020, 583, 96-102.	13.7	338
16	Circulating cell-free mitochondrial DNA levels in Parkinson's disease are influenced by treatment. Molecular Neurodegeneration, 2020, 15, 10.	4.4	56
17	Mitochondrial isolation: when size matters. Wellcome Open Research, 2020, 5, 226.	0.9	4
18	Mitochondrial isolation: when size matters. Wellcome Open Research, 2020, 5, 226.	0.9	3

#	Article	IF	CITATIONS
19	Cell-free mitochondrial DNA in progressive multiple sclerosis. Mitochondrion, 2019, 46, 307-312.	1.6	32
20	Assessing mitochondrial heteroplasmy using next generation sequencing: A note of caution. Mitochondrion, 2019, 46, 302-306.	1.6	56
21	Germline selection shapes human mitochondrial DNA diversity. Science, 2019, 364, .	6.0	178
22	A genome-wide association study of mitochondrial DNA copy number in two population-based cohorts. Human Genomics, 2019, 13, 6.	1.4	25
23	Mitochondrial Haplogroup and the Risk of Acute Kidney Injury Following Cardiac Bypass Surgery. Scientific Reports, 2019, 9, 2279.	1.6	2
24	Reversion after replacement of mitochondrial DNA. Nature, 2019, 574, E8-E11.	13.7	27
25	Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits. American Journal of Human Genetics, 2019, 104, 112-138.	2.6	106
26	Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nature Cell Biology, 2018, 20, 144-151.	4.6	182
27	De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures. American Journal of Human Genetics, 2018, 103, 144-153.	2.6	36
28	Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. American Journal of Human Genetics, 2018, 102, 858-873.	2.6	65
29	metabolic profiling of Parkinson's disease and mild cognitive impairment. Movement Disorders, 2017, 32, 927-932.	2.2	58
30	Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson disease. Annals of Neurology, 2017, 82, 1016-1021.	2.8	45
31	Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain, 2017, 140, 3191-3203.	3.7	323
32	Mutations in mitochondrial DNA causing tubulointerstitial kidney disease. PLoS Genetics, 2017, 13, e1006620.	1.5	52
33	Background sequence characteristics influence the occurrence and severity of disease-causing mtDNA mutations. PLoS Genetics, 2017, 13, e1007126.	1.5	49
34	Reduced mitochondrial DNA is not a biomarker of depression in Parkinson's disease. Movement Disorders, 2016, 31, 1923-1924.	2.2	3
35	The Ageing Brain, Mitochondria and Neurodegeneration. , 2016, , 59-80.		4
36	Somatic mtDNA variation is an important component of Parkinson's disease. Neurobiology of Aging, 2016, 38, 217.e1-217.e6.	1.5	61

#	Article	IF	CITATIONS
37	Reply: Parsing the differences in affected with LHON: genetic versus environmental triggers of disease conversion. Brain, 2016, 139, e18-e18.	3.7	13
38	Reduced mitochondrial DNA copy number is a biomarker of Parkinson's disease. Neurobiology of Aging, 2016, 38, 216.e7-216.e10.	1.5	178
39	Exome sequencing in dementia with Lewy bodies. Translational Psychiatry, 2016, 6, e728-e728.	2.4	35
40	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.	2.6	333
41	Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck. Human Molecular Genetics, 2016, 25, 1031-1041.	1.4	53
42	Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for earlyâ€stage Parkinson's disease. Annals of Neurology, 2015, 78, 1000-1004.	2.8	106
43	Inherited mtDNA variations are not strong risk factors in human prion disease. Neurobiology of Aging, 2015, 36, 2908.e1-2908.e3.	1.5	Ο
44	Extreme-Depth Re-sequencing of Mitochondrial DNA Finds No Evidence of Paternal Transmission in Humans. PLoS Genetics, 2015, 11, e1005040.	1.5	62
45	Variation in complement protein C1q is not a major contributor to cognitive impairment in Parkinson's disease. Neuroscience Letters, 2015, 594, 66-69.	1.0	11
46	Characterizing mild cognitive impairment in incident Parkinson disease. Neurology, 2014, 82, 308-316.	1.5	359
47	Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations. Genetics in Medicine, 2014, 16, 962-971.	1.1	64
48	Recent Mitochondrial DNA Mutations Increase the Risk of Developing Common Late-Onset Human Diseases. PLoS Genetics, 2014, 10, e1004369.	1.5	131
49	Mitochondrial DNA and traumatic brain injury. Annals of Neurology, 2014, 75, 186-195.	2.8	46
50	Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. Brain, 2014, 137, 335-353.	3.7	229
51	Frailty and mortality are not influenced by mitochondrial DNA haplotypes in the very old. Neurobiology of Aging, 2013, 34, 2889.e1-2889.e4.	1.5	12
52	Mitochondrial genetics. British Medical Bulletin, 2013, 106, 135-159.	2.7	275
53	Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease. Neurology, 2013, 80, 2042-2048.	1.5	129
54	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Human Molecular Genetics, 2013, 22, 1039-1049.	1.4	122

#	Article	IF	CITATIONS
55	No evidence of an association between mitochondrial DNA variants and osteoarthritis in 7393 cases and 5122 controls. Annals of the Rheumatic Diseases, 2013, 72, 136-139.	0.5	39
56	Raised Intraocular Pressure as a Potential Risk Factor for Visual Loss in Leber Hereditary Optic Neuropathy. PLoS ONE, 2013, 8, e63446.	1.1	23
57	Genetic variations within the OPA1 gene are not associated with neuromyelitis optica. Multiple Sclerosis Journal, 2012, 18, 240-243.	1.4	1
58	What is influencing the phenotype of the common homozygous polymerase-Î ³ mutation p.Ala467Thr?. Brain, 2012, 135, 3614-3626.	3.7	46
59	Epigenetics, epidemiology and mitochondrial DNA diseases. International Journal of Epidemiology, 2012, 41, 177-187.	0.9	146
60	Unique mitochondrial DNA in highly inbred feral cattle. Mitochondrion, 2012, 12, 438-440.	1.6	6
61	A new phenotype of brain iron accumulation with dystonia, optic atrophy, and peripheral neuropathy. Movement Disorders, 2012, 27, 789-793.	2.2	41
62	Genetic and pathological links between Parkinson's disease and the lysosomal disorder Sanfilippo syndrome. Movement Disorders, 2012, 27, 312-315.	2.2	56
63	Variation in MAPT is not a contributing factor to the incomplete penetrance in LHON. Mitochondrion, 2011, 11, 620-622.	1.6	4
64	No evidence of substantia nigra telomere shortening in Parkinson's disease. Neurobiology of Aging, 2011, 32, 2107.e3-2107.e5.	1.5	29
65	Mitochondrial DNA does not contribute to the heritability of non-alcoholic fatty liver disease. Mitochondrion, 2011, 11, 234-235.	1.6	4
66	A critical analysis of the combined usage of protein localization prediction methods: Increasing the number of independent data sets can reduce the accuracy of predicted mitochondrial localization. Mitochondrion, 2011, 11, 444-449.	1.6	1
67	Dissection of the genetics of Parkinson's disease identifies an additional association 5' of SNCA and multiple associated haplotypes at 17q21. Human Molecular Genetics, 2011, 20, 345-353.	1.4	202
68	A founder mutation in Anoctamin 5 is a major cause of limb girdle muscular dystrophy. Brain, 2011, 134, 171-182.	3.7	254
69	Late-onset ptosis and myopathy in a patient with a heterozygous insertion in POLG2. Journal of Neurology, 2010, 257, 1517-1523.	1.8	39
70	OPA1 increases the risk of normal but not high tension glaucoma. Journal of Medical Genetics, 2010, 47, 120-125.	1.5	53
71	Genetic variation of CHRNA4 does not modulate attention in Parkinson's disease. Neuroscience Letters, 2010, 479, 123-125.	1.0	6
72	The Prevalence and Natural History of Dominant Optic Atrophy Due to OPA1 Mutations. Ophthalmology, 2010, 117, 1538-1546.e1.	2.5	162

#	Article	IF	CITATIONS
73	Multi-system neurological disease is common in patients with OPA1 mutations. Brain, 2010, 133, 771-786.	3.7	385
74	Variation in OPA1 does not explain the incomplete penetrance of Leber hereditary optic neuropathy. Molecular Vision, 2010, 16, 2760-4.	1.1	4
75	Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain, 2009, 132, 3165-3174.	3.7	112
76	Quality of Life in Patients with Leber Hereditary Optic Neuropathy. , 2009, 50, 3112.		87
77	Singleâ€cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson's disease gene. Annals of Neurology, 2009, 66, 792-798.	2.8	49
78	Human liver stem cells originate from the canals of hering. Hepatology, 2009, 50, 992-993.	3.6	17
79	No association between common <i>POLG1</i> variants and sporadic idiopathic Parkinson's disease. Movement Disorders, 2009, 24, 1092-1094.	2.2	32
80	Genetic variation in the methylenetetrahydrofolate reductase gene, MTHFR, does not alter the risk of visual failure in Leber's hereditary optic neuropathy. Molecular Vision, 2009, 15, 870-5.	1.1	4
81	Novel mutations in the TK2 gene associated with fatal mitochondrial DNA depletion myopathy. Neuromuscular Disorders, 2008, 18, 557-560.	0.3	42
82	Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain, 2008, 131, 329-337.	3.7	381
83	Novel POLG1 mutations associated with neuromuscular and liver phenotypes in adults and children. Journal of Medical Genetics, 2008, 46, 209-214.	1.5	38
84	Leber Hereditary Optic Neuropathy Presenting in a 75-Year-Old Man. Journal of Neuro-Ophthalmology, 2008, 28, 155.	0.4	12
85	Does mitochondrial DNA predispose to neuromyelitis optica (Devic's disease)?. Brain, 2008, 131, e93-e93.	3.7	17
86	Inherited mitochondrial optic neuropathies. Journal of Medical Genetics, 2008, 46, 145-158.	1.5	336
87	POLG1 Mutations Manifesting as Autosomal Recessive Axonal Charcot-Marie-Tooth Disease. Archives of Neurology, 2008, 65, 133-6.	4.9	42
88	Leber hereditary optic neuropathy. Expert Opinion on Medical Diagnostics, 2008, 2, 789-799.	1.6	17

#	Article	IF	CITATIONS
91	X-Inactivation patterns in females harboring mtDNA mutations that cause Leber hereditary optic neuropathy. Molecular Vision, 2007, 13, 2339-43.	1.1	21
92	Mutant POLG2 Disrupts DNA Polymerase Î ³ Subunits and Causes Progressive External Ophthalmoplegia. American Journal of Human Genetics, 2006, 78, 1026-1034.	2.6	215
93	The A467T and W748S POLG substitutions are a rare cause of adult-onset ataxia in Europe. Brain, 2006, 130, E69-E69.	3.7	14
94	Phenotypic spectrum associated with mutations of the mitochondrial polymerase gene. Brain, 2006, 129, 1674-1684.	3.7	397
95	Mitochondrial DNA polymerase-γ and human disease. Human Molecular Genetics, 2006, 15, R244-R252.	1.4	192
96	Identification of an X-Chromosomal Locus and Haplotype Modulating the Phenotype of a Mitochondrial DNA Disorder. American Journal of Human Genetics, 2005, 77, 1086-1091.	2.6	181
97	A novel ANT1 gene mutation with probable germline mosaicism in autosomal dominant progressive external ophthalmoplegia. Neuromuscular Disorders, 2005, 15, 311-315.	0.3	61