
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10577699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science, 2009, 326, 289-293.	12.6	7,170
2	Controlling the double helix. Nature, 2003, 421, 448-453.	27.8	961
3	A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature, 1986, 321, 702-706.	27.8	848
4	Functional and Mechanistic Diversity of Distal Transcription Enhancers. Cell, 2011, 144, 327-339.	28.9	718
5	An expansive human regulatory lexicon encoded in transcription factor footprints. Nature, 2012, 489, 83-90.	27.8	715
6	The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes and Development, 2004, 18, 1263-1271.	5.9	706
7	Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature, 1982, 298, 679-681.	27.8	639
8	Control of c-myc Regulation in Normal and Neoplastic Cells. Advances in Cancer Research, 1991, 56, 1-48.	5.0	559
9	Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature, 1981, 292, 311-317.	27.8	511
10	Proximity among Distant Regulatory Elements at the β-Globin Locus Requires GATA-1 and FOG-1. Molecular Cell, 2005, 17, 453-462.	9.7	449
11	Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Research, 1987, 15, 10159-10177.	14.5	448
12	Levels of c-myc oncogene mRNA are invariant throughout the cell cycle. Nature, 1985, 314, 363-366.	27.8	445
13	Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Structural and Molecular Biology, 2004, 11, 1068-1075.	8.2	443
14	α-globin-gene switching during the development of chicken embryos: Expression and chromosome structure. Cell, 1981, 24, 333-344.	28.9	381
15	Interaction of HMG 14 and 17 with actively transcribed genes. Cell, 1980, 19, 289-301.	28.9	373
16	Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature Genetics, 2002, 32, 438-442.	21.4	310
17	The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation. Genes and Development, 2006, 20, 1447-1457.	5.9	289
18	Sequence requirements for premature termination of transcription in the human c-myc gene. Cell, 1988, 53, 245-256.	28.9	265

#	Article	IF	CITATIONS
19	Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes and Development, 2000, 14, 940-950.	5.9	261
20	A Functional Enhancer Suppresses Silencing of a Transgene and Prevents Its Localization Close to Centromeric Heterochromatin. Cell, 1999, 99, 259-269.	28.9	241
21	β-globin Gene Switching and DNase I Sensitivity of the Endogenous β-globin Locus in Mice Do Not Require the Locus Control Region. Molecular Cell, 2000, 5, 387-393.	9.7	224
22	Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature, 2014, 515, 365-370.	27.8	211
23	Form follows function: the genomic organization of cellular differentiation. Genes and Development, 2004, 18, 1371-1384.	5.9	209
24	Hb switching in chickens. Cell, 1980, 19, 973-980.	28.9	199
25	The β-Globin LCR Is Not Necessary for an Open Chromatin Structure or Developmentally Regulated Transcription of the Native Mouse β-Globin Locus. Molecular Cell, 1998, 2, 447-455.	9.7	186
26	Activation of globin genes during chicken development. Cell, 1981, 24, 393-401.	28.9	176
27	Enhancers: The abundance and function of regulatory sequences beyond promoters. Developmental Biology, 2010, 339, 250-257.	2.0	169
28	The Locus Control Region Is Necessary for Gene Expression in the Human β-Globin Locus but Not the Maintenance of an Open Chromatin Structure in Erythroid Cells. Molecular and Cellular Biology, 1998, 18, 5992-6000.	2.3	163
29	The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. Genes and Development, 2003, 17, 1009-1018.	5.9	155
30	Genomic Targeting of Methylated DNA: Influence of Methylation on Transcription, Replication, Chromatin Structure, and Histone Acetylation. Molecular and Cellular Biology, 2000, 20, 9103-9112.	2.3	147
31	Regulation of β-globin gene expression: straightening out the locus. Current Opinion in Genetics and Development, 1996, 6, 488-495.	3.3	138
32	Post-transcriptional regulation of the chicken thymidine kinase gene. Nucleic Acids Research, 1984, 12, 1427-1446.	14.5	124
33	Dynamic Analysis of Proviral Induction and De Novo Methylation: Implications for a Histone Deacetylase-Independent, Methylation Density-Dependent Mechanism of Transcriptional Repression. Molecular and Cellular Biology, 2000, 20, 842-850.	2.3	124
34	Gene Order and Dynamic Domains. Science, 2004, 306, 644-647.	12.6	124
35	Activator-Mediated Recruitment of the MLL2 Methyltransferase Complex to the β-Globin Locus. Molecular Cell, 2007, 27, 573-584.	9.7	122
36	DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17771-17776.	7.1	121

#	Article	IF	CITATIONS
37	On emerging nuclear order. Journal of Cell Biology, 2011, 192, 711-721.	5.2	120
38	Temperature-sensitive changes in the structure of globin chromatin in lines of red cell precursors transformed by ts-AEV. Cell, 1982, 28, 931-940.	28.9	110
39	A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Research, 2003, 11, 513-525.	2.2	110
40	DNA Cassette Exchange in ES Cells Mediated by FLP Recombinase:Â An Efficient Strategy for Repeated Modification of Tagged Loci by Marker-Free Constructsâ€. Biochemistry, 1998, 37, 6229-6234.	2.5	107
41	Alteration of c-myc chromatin structure by avian leukosis virus integration. Nature, 1984, 307, 702-708.	27.8	101
42	Methylation-Mediated Proviral Silencing Is Associated with MeCP2 Recruitment and Localized Histone H3 Deacetylation. Molecular and Cellular Biology, 2001, 21, 7913-7922.	2.3	97
43	Something Silent This Way Forms: The Functional Organization of the Repressive Nuclear Compartment. Annual Review of Cell and Developmental Biology, 2013, 29, 241-270.	9.4	96
44	The Immunoglobulin Heavy Chain Locus Control Region Increases Histone Acetylation along Linked c- <i>myc</i> Genes. Molecular and Cellular Biology, 1998, 18, 6281-6292.	2.3	85
45	Role of Methylation in the Induced and Spontaneous Expression of the Avian Endogenous Virusev-1: DNA Structure and Gene Products. Molecular and Cellular Biology, 1982, 2, 638-652.	2.3	83
46	Common mechanisms for the control of eukaryotic transcriptional elongation. BioEssays, 1993, 15, 659-665.	2.5	74
47	Multiple functions of Ldb1 required for β-globin activation during erythroid differentiation. Blood, 2010, 116, 2356-2364.	1.4	62
48	Dynamics and control of state-dependent networks for probing genomic organization. Proceedings of the United States of America, 2011, 108, 17257-17262.	7.1	60
49	Regulation of expression and chromosomal subunit conformation of avian retrovirus genomes. Cell, 1978, 14, 865-878.	28.9	59
50	An Unmethylated 3′ Promoter-Proximal Region Is Required for Efficient Transcription Initiation. PLoS Genetics, 2007, 3, e27.	3.5	59
51	Wash Interacts with Lamin and Affects Global Nuclear Organization. Current Biology, 2015, 25, 804-810.	3.9	54
52	Role of Methylation in the Induced and Spontaneous Expression of the Avian Endogenous Virus ev -1: DNA Structure and Gene Products. Molecular and Cellular Biology, 1982, 2, 638-652.	2.3	54
53	Replication Initiation Patterns in the β-Globin Loci of Totipotent and Differentiated Murine Cells: Evidence for Multiple Initiation Regions. Molecular and Cellular Biology, 2002, 22, 442-452.	2.3	52
54	The hypersensitive sites of the murine β-globin locus control region act independently to affect nuclear localization and transcriptional elongation. Blood, 2012, 119, 3820-3827.	1.4	49

#	Article	IF	CITATIONS
55	UpSET Recruits HDAC Complexes and Restricts Chromatin Accessibility and Acetylation at Promoter Regions. Cell, 2012, 151, 1214-1228.	28.9	46
56	Killer in search of a motive?. Nature, 1997, 389, 122-123.	27.8	40
57	Functional redundancy in the nuclear compartmentalization of the late-replicating genome. Nucleus, 2014, 5, 626-635.	2.2	37
58	The redundancy of the mammalian heterochromatic compartment. Current Opinion in Genetics and Development, 2016, 37, 1-8.	3.3	35
59	Independent formation of Dnasel hypersensitive sites in the murine β-globin locus control region. Blood, 2000, 95, 3600-3604.	1.4	34
60	In vivofootprinting of the human IL-2 gene reveals a nuclear factor bound to the transcription start site in T cells. Nucleic Acids Research, 1993, 21, 4824-4829.	14.5	32
61	What Can Systems Theory of Networks Offer to Biology?. PLoS Computational Biology, 2012, 8, e1002543.	3.2	28
62	Chromatin Structure and Gene Expression. Springer Series in Molecular Biology, 1984, , 293-351.	2.0	27
63	Networking the nucleus. Molecular Systems Biology, 2010, 6, 395.	7.2	21
64	Molecular Analysis of the c-myc Transcription Elongation Block Annals of the New York Academy of Sciences, 1990, 599, 12-28.	3.8	17
65	H3 K79 dimethylation marks developmental activation of the β-globin gene but is reduced upon LCR-mediated high-level transcription. Blood, 2008, 112, 406-414.	1.4	15
66	Histone hyperacetylation within the β-globin locus is context-dependent and precedes high-level gene expression. Blood, 2009, 114, 3479-3488.	1.4	15
67	The Nucleus Inside Out—Through a Rod Darkly. Cell, 2009, 137, 205-207.	28.9	6
68	Chromatin Structure and Gene Expression in Germ Line and Somatic Cells. Advances in Experimental Medicine and Biology, 1986, 205, 205-243.	1.6	3
69	Getting connected in the globin interactome. Nature Genetics, 2010, 42, 16-17.	21.4	2
70	UpSET-ing the balance. Fly, 2013, 7, 153-160.	1.7	2
71	Unravelling immunoglobulin expression. Current Biology, 1991, 1, 13-14.	3.9	1