
Stanley Falkow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10576255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 1996, 173, 33-38.	2.2	2,830
2	Identification of the Uncultured Bacillus of Whipple's Disease. New England Journal of Medicine, 1992, 327, 293-301.	27.0	1,196
3	The Agent of Bacillary Angiomatosis. New England Journal of Medicine, 1990, 323, 1573-1580.	27.0	985
4	General Method for the Isolation of Plasmid Deoxyribonucleic Acid. Journal of Bacteriology, 1973, 116, 1064-1066.	2.2	915
5	What are the consequences of the disappearing human microbiota?. Nature Reviews Microbiology, 2009, 7, 887-894.	28.6	738
6	Disruption of the Epithelial Apical-Junctional Complex by <i>Helicobacter pylori</i> CagA. Science, 2003, 300, 1430-1434.	12.6	678
7	Identification of invasin: A protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell, 1987, 50, 769-778.	28.9	645
8	Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature, 1999, 401, 804-808.	27.8	606
9	A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature, 1985, 317, 262-264.	27.8	597
10	Fluorescence-Based Isolation of Bacterial Genes Expressed Within Host Cells. Science, 1997, 277, 2007-2011.	12.6	575
11	Macrophage-dependent induction of theSalmonellapathogenicity island 2 type III secretion system and its role in intracellular survival. Molecular Microbiology, 1998, 30, 175-188.	2.5	563
12	Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology (United Kingdom), 1997, 143, 303-311.	1.8	559
13	Persistent bacterial infections: the interface of the pathogen and the host immune system. Nature Reviews Microbiology, 2004, 2, 747-765.	28.6	473
14	Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature, 1993, 364, 639-642.	27.8	451
15	Bacterial genetics by flow cytometry: rapid isolation ofSalmonella typhimuriumacid-inducible promoters by differential fluorescence induction. Molecular Microbiology, 1996, 22, 367-378.	2.5	442
16	Granuloma-Specific Expression of Mycobacterium Virulence Proteins from the Glycine-Rich PE-PGRS Family. Science, 2000, 288, 1436-1439.	12.6	396
17	Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature, 1981, 294, 665-667.	27.8	380
18	Amino acid sequence homology between cholera toxin and Escherichia coli heat-labile toxin. Nature, 1980, 288, 499-501.	27.8	376

#	Article	IF	CITATIONS
19	SALMONELLOSIS: Host Immune Responses and Bacterial Virulence Determinants1. Annual Review of Immunology, 1996, 14, 533-561.	21.8	375
20	Salmonella typhimurium Persists within Macrophages in the Mesenteric Lymph Nodes of Chronically Infected Nramp1+/+ Mice and Can Be Reactivated by IFNÎ ³ Neutralization. Journal of Experimental Medicine, 2004, 199, 231-241.	8.5	366
21	OmpR Regulates the Two-Component System SsrA-SsrB in <i>Salmonella</i> Pathogenicity Island 2. Journal of Bacteriology, 2000, 182, 771-781.	2.2	291
22	Applications for green fluorescent protein (GFP) in the study of hostpathogen interactions. Gene, 1996, 173, 47-52.	2.2	276
23	Molecular Nature of Two Nonconjugative Plasmids Carrying Drug Resistance Genes. Journal of Bacteriology, 1974, 117, 619-630.	2.2	263
24	Molecular Koch's postulates applied to bacterial pathogenicity — a personal recollection 15 years later. Nature Reviews Microbiology, 2004, 2, 67-72.	28.6	241
25	Salmonella Exploits Caspase-1 to Colonize Peyer's Patches in a Murine Typhoid Model. Journal of Experimental Medicine, 2000, 192, 249-258.	8.5	219
26	Cag pathogenicity island-specific responses of gastric epithelial cells to Helicobacter pylori infection. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15136-15141.	7.1	202
27	Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella Pathogenicity Island 2. Molecular Microbiology, 1997, 24, 155-167.	2.5	180
28	Microbial Pathogenesis: Genomics and Beyond. Science, 1997, 276, 707-712.	12.6	170
29	Identification of the protein encoded by the transposable element Tn 3 which is required for its transposition. Nature, 1979, 282, 797-801.	27.8	167
30	Efficient Homologous and Illegitimate Recombination in the Opportunistic Yeast Pathogen Candida glabrata. Genetics, 1999, 151, 979-987.	2.9	167
31	A Haemophilus influenzae IgA proteaseâ€like protein promotes intimate interaction with human epithelial cells. Molecular Microbiology, 1994, 14, 217-233.	2.5	160
32	virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Molecular Microbiology, 2003, 48, 385-400.	2.5	152
33	Plasmid-Mediated Beta-Lactamase Production in <i>Neisseria gonorrhoeae</i> . Antimicrobial Agents and Chemotherapy, 1977, 11, 528-533.	3.2	143
34	Suppression of T and B Lymphocyte Activation by a Yersinia pseudotuberculosis Virulence Factor, Yoph. Journal of Experimental Medicine, 1999, 190, 1343-1350.	8.5	136
35	Identification of Attenuated Yersinia pseudotuberculosis Strains and Characterization of an Orogastric Infection in BALB/c Mice on Day 5 Postinfection by Signature-Tagged Mutagenesis. Infection and Immunity, 2001, 69, 2779-2787.	2.2	112
36	Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microbes and Infection, 2001, 3, 1201-1212.	1.9	109

#	Article	IF	CITATIONS
37	Salmonella pathogenicity island 2-dependent macrophage death is mediated in part by the host cysteine protease caspase-1. Cellular Microbiology, 2001, 3, 825-837.	2.1	108
38	Specific Labeling and Physical Characterization of R-Factor Deoxyribonucleic Acid in <i>Escherichia coli</i> . Journal of Bacteriology, 1970, 104, 331-339.	2.2	108
39	The molecular nature of heat-labile enterotoxin (LT) of Escherichia coli. Nature, 1979, 277, 406-407.	27.8	101
40	Characterization of Plasmid Deoxyribonucleic Acid from Neisseria gonorrhoeae. Infection and Immunity, 1974, 10, 712-717.	2.2	96
41	The Salmonella-containing vacuole is a major site of intracellular cholesterol accumulation and recruits the GPI-anchored protein CD55. Cellular Microbiology, 2002, 4, 315-328.	2.1	91
42	Microarray-Based Detection of Salmonella enterica Serovar Typhimurium Transposon Mutants That Cannot Survive in Macrophages and Mice. Infection and Immunity, 2005, 73, 5438-5449.	2.2	85
43	Mig-14 is an inner membrane-associated protein that promotes Salmonella typhimurium resistance to CRAMP, survival within activated macrophages and persistent infection. Molecular Microbiology, 2004, 55, 954-972.	2.5	77
44	Two replication initiation sites on R-plasmid DNA. Molecular Genetics and Genomics, 1975, 140, 39-50.	2.4	76
45	mig - 14 Is a Salmonella Gene That Plays a Role in Bacterial Resistance to Antimicrobial Peptides. Journal of Bacteriology, 2002, 184, 3203-3213.	2.2	75
46	Phosphorylationâ€independent Effects of CagA during Interaction betweenHelicobacter pyloriand T84 Polarized Monolayers. Journal of Infectious Diseases, 2004, 190, 1516-1523.	4.0	71
47	THE REPLICATION OF R-FACTOR DNA IN ESCHERICHIA COLI K-12 FOLLOWING CONJUGATION. Annals of the New York Academy of Sciences, 1971, 182, 153-171.	3.8	70
48	The Yersinia Yops inhibit invasion of Listeria, Shigella and Edwardsiella but not Salmonella into epithelial cells. Molecular Microbiology, 1998, 28, 1269-1281.	2.5	69
49	Breaking into the epithelial apical–junctional complex — news from pathogen hackers. Current Opinion in Cell Biology, 2004, 16, 86-93.	5.4	68
50	The Campylobacter jejuni dccRS two-component system is required for optimal in vivo colonization but is dispensable for in vitro growth. Molecular Microbiology, 2004, 54, 1269-1286.	2.5	64
51	Detection of Chlamydia trachomatis in Tissue Culture and Cervical Scrapings by in Situ DNA Hybridization. Journal of Infectious Diseases, 1986, 153, 1155-1159.	4.0	60
52	Is Persistent Bacterial Infection Good for Your Health?. Cell, 2006, 124, 699-702.	28.9	56
53	Modulation of Virulence by Two Acidified Nitrite-Responsive Loci of Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2003, 71, 3196-3205.	2.2	54
54	Delineation of Upstream Signaling Events in the Salmonella Pathogenicity Island 2 Transcriptional Activation Pathway. Journal of Bacteriology, 2004, 186, 4694-4704.	2.2	52

#	Article	IF	CITATIONS
55	Passage of Salmonella through polarized epithelial cells: role of the host and bacterium. Journal of Cell Science, 1989, 1989, 99-107.	2.0	45
56	Constitutive and Inducible Green Fluorescent Protein Expression in <i>Bartonella henselae</i> . Infection and Immunity, 1998, 66, 3964-3967.	2.2	42
57	Flow cytometry and bacterial pathogenesis. Current Opinion in Microbiology, 1998, 1, 359-363.	5.1	41
58	Apoptosis as a common bacterial virulence strategy. International Journal of Medical Microbiology, 2000, 290, 7-13.	3.6	36
59	New Approaches for Validation of Lethal Phenotypes and Genetic Reversion in Helicobacter pylori. Helicobacter, 2001, 6, 15-23.	3.5	35
60	mig-14 Is a Horizontally Acquired, Host-Induced Gene Required for Salmonella enterica Lethal Infection in the Murine Model of Typhoid Fever. Infection and Immunity, 2000, 68, 7126-7131.	2.2	31
61	Relationship between β converting and γ non-converting corynebacteriophage DNA. Nature, 1978, 271, 683-685.	27.8	29
62	The role of host tyrosine phosphorylation in bacterial pathogenesis. Trends in Genetics, 1993, 9, 85-89.	6.7	29
63	AFA-I, a cloned afimbrial X-type adhesin from a human pyelonephritic Escherichia coli strain. Purification and chemical, functional and serlologic characterization. FEBS Journal, 1985, 152, 315-321.	0.2	28
64	Bile-induced 'pili' in Campylobacter jejuni are bacteria-independent artifacts of the culture medium. Molecular Microbiology, 2001, 39, 1546-1549.	2.5	19
65	Covalently closed circular DNA molecules deficient in superhelical density as intermediates in plasmid life cycle. Nature, 1976, 261, 516-519.	27.8	18
66	I never met a microbe I didn't like. Nature Medicine, 2008, 14, 1053-1057.	30.7	17
67	Genomic clues for defining bacterial pathogenicity. Microbes and Infection, 1999, 1, 615-619.	1.9	16
68	Capsule Loss by Haemophilus influenzae Type b Results in Enhanced Adherence to and Entry into Human Cells. Journal of Infectious Diseases, 1992, 165, S117-S118.	4.0	14
69	Helicobacter pylori and Gastric Cancer: What can be Learned by Studying the Response of Gastric Epithelial Cells to the Infection?. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 1859-1864.	2.5	13
70	From microbial genomics to meta-genomics. Drug Development Research, 1997, 41, 180-192.	2.9	11
71	The Fortunate Professor. Annual Review of Microbiology, 2008, 62, 1-18.	7.3	7
72	The Uses of Green Fluorescent Protein in Prokaryotes. Methods of Biochemical Analysis, 2005, , 163-178.	0.2	6

#	Article	IF	CITATIONS
73	A Molecular Perspective of Microbial Pathogenicity. , 2015, , 1-10.e2.		6
74	Cellular Microbiology is launched. Cellular Microbiology, 1999, 1, 3-6.	2.1	5
75	Living in Stools Is Not as Dumb as You Think. Journal of Bacteriology, 2000, 182, 3319-3322.	2.2	4
76	A Molecular Perspective of Microbial Pathogenicity. , 2010, , 1-13.		3
77	Pathogen strategies. Advances in Cellular and Molecular Biology of Membranes and Organelles, 1999, 6, 1-25.	0.3	2
78	1.1 Detection of Virulence Genes Expressed within Infected Cells. Methods in Microbiology, 1998, , 3-12.	0.8	1
79	Using Knowledge of Virulence Factors to Select or Design Organisms with Low Risk of Pathogenicity. , 1988, 45, 121-126.		Ο
80	Selection of Signature-Tagged <i>Legionella pneumophila</i> Mutants in <i>Acanthamoeba castellanii</i> . , 0, , 152-160.		0
81	Toward Understanding the Molecular Basis of Bacterial Pathogenicity. , O, , 1-10.		0