
Hugues Dardente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1057542/publications.pdf Version: 2024-02-01

HUCHES DADDENTE

#	Article	IF	CITATIONS
1	<scp>GnRH</scp> and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and <scp>RFRP</scp> â€3. Journal of Neuroendocrinology, 2022, 34, e13124.	2.6	13
2	Thyroid hormone and hypothalamic stem cells in seasonal functions. Vitamins and Hormones, 2021, 116, 91-131.	1.7	9
3	The C-terminal Domain of piggyBac Transposase Is Not Required for DNA Transposition. Journal of Molecular Biology, 2021, 433, 166805.	4.2	7
4	The piggyBac-derived protein 5 (PGBD5) transposes both the closely and the distantly related piggyBac-like elements Tcr-pble and Ifp2. Journal of Molecular Biology, 2021, 433, 166839.	4.2	5
5	Photoperiod is involved in the regulation of seasonal breeding in male water voles (<i>Arvicola) Tj ETQq1 1 0.784</i>	314.rgBT	Oyerlock 10
6	Field study reveals morphological and neuroendocrine correlates of seasonal breeding in female water voles, Arvicola terrestris. General and Comparative Endocrinology, 2021, 311, 113853.	1.8	8
7	No evidence that Spexin impacts LH release and seasonal breeding in the ewe. Theriogenology, 2020, 158, 1-7.	2.1	5
8	Circuit-level analysis identifies target genes of sex steroids in ewe seasonal breeding. Molecular and Cellular Endocrinology, 2020, 512, 110825.	3.2	16
9	Photoperiodic induction without light-mediated circadian entrainment in a high arctic resident bird. Journal of Experimental Biology, 2020, 223, .	1.7	10
10	Debunking the Myth of the Endogenous Antiangiogenic Vegfaxxxb Transcripts. Trends in Endocrinology and Metabolism, 2020, 31, 398-409.	7.1	5
11	Discontinuity in the molecular neuroendocrine response to increasing daylengths in Ileâ€deâ€France ewes: Is transient <i>Dio2</i> induction a key feature of circannual timing?. Journal of Neuroendocrinology, 2019, 31, e12775.	2.6	17
12	An integrative view of mammalian seasonal neuroendocrinology. Journal of Neuroendocrinology, 2019, 31, e12729.	2.6	78
13	Brain mapping of the gonadotropinâ€inhibitory hormoneâ€related peptide 2 with a novel antibody suggests a connection with emotional reactivity in the Japanese quail (<i>Coturnix japonica</i> ,) Tj ETQq1 1 0.78	34 3. 64 rgB	T Øverlock
14	The impact of thyroid hormone in seasonal breeding has a restricted transcriptional signature. Cellular and Molecular Life Sciences, 2018, 75, 905-919.	5.4	51
15	Anti-angiogenic VEGFAxxxb transcripts are not expressed in the medio-basal hypothalamus of the seasonal sheep. PLoS ONE, 2018, 13, e0197123.	2.5	9
16	Neuroendocrine correlates of the critical day length response in the Soay sheep. Journal of Neuroendocrinology, 2018, 30, e12631.	2.6	16
17	Photoperiod and thyroid hormone regulate expression of <scp><i> </i></scp> <i>â€dopachrome tautomerase</i> (<i>Dct</i>), a melanocyte stemâ€cell marker, in tanycytes of the ovine hypothalamus. Journal of Neuroendocrinology, 2018, 30, e12640.	2.6	12
18	Effects of Photoperiod Extension on Clock Gene and Neuropeptide RNA Expression in the SCN of the Soay Sheep. PLoS ONE, 2016, 11, e0159201.	2.5	8

HUGUES DARDENTE

#	Article	IF	CITATIONS
19	Seasonal breeding in mammals: From basic science to applications and back. Theriogenology, 2016, 86, 324-332.	2.1	46
20	A synthetic kisspeptin analog that triggers ovulation and advances puberty. Scientific Reports, 2016, 6, 26908.	3.3	53
21	Rational Design of Triazololipopeptides Analogs of Kisspeptin Inducing a Long-Lasting Increase of Gonadotropins. Journal of Medicinal Chemistry, 2015, 58, 3459-3470.	6.4	34
22	Functional Divergence of Type 2 Deiodinase Paralogs in the Atlantic Salmon. Current Biology, 2015, 25, 936-941.	3.9	48
23	Circannual Biology: The Double Life of the Seasonal Thyrotroph. Current Biology, 2015, 25, R988-R991.	3.9	8
24	Acute Injection and Chronic Perfusion of Kisspeptin Elicit Gonadotropins Release but Fail to Trigger Ovulation in the Mare1. Biology of Reproduction, 2014, 90, 36.	2.7	24
25	Thyroid Hormone and Seasonal Rhythmicity. Frontiers in Endocrinology, 2014, 5, 19.	3.5	143
26	Cellular mechanisms and integrative timing of neuroendocrine control of GnRH secretion by kisspeptin. Molecular and Cellular Endocrinology, 2014, 382, 387-399.	3.2	53
27	Seasonal Timing: How Does a Hibernator Know When to Stop Hibernating?. Current Biology, 2014, 24, R602-R605.	3.9	30
28	BDNF parabrachio-amygdaloid pathway in morphine-induced analgesia. International Journal of Neuropsychopharmacology, 2013, 16, 1649-1660.	2.1	20
29	Analysis of core circadian feedback loop in suprachiasmatic nucleus of <i>mCry1-luc</i> transgenic reporter mouse. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9547-9552.	7.1	56
30	Circannual Variation in Thyroid Hormone Deiodinases in a Shortâ€Đay Breeder. Journal of Neuroendocrinology, 2013, 25, 412-421.	2.6	64
31	Photoperiodic Variation in CD45-Positive Cells and Cell Proliferation in the Mediobasal Hypothalamus of the Soay Sheep. Chronobiology International, 2013, 30, 548-558.	2.0	36
32	The nuclear receptor REVâ€ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB Journal, 2012, 26, 3321-3335.	0.5	198
33	Strong pituitary and hypothalamic responses to photoperiod but not to 6-methoxy-2-benzoxazolinone in female common voles (Microtus arvalis). General and Comparative Endocrinology, 2012, 179, 289-295.	1.8	40
34	Melatoninâ€Dependent Timing of Seasonal Reproduction by the <i>Pars Tuberalis</i> : Pivotal Roles for Long Daylengths and Thyroid Hormones. Journal of Neuroendocrinology, 2012, 24, 249-266.	2.6	106
35	Circadian Variation of the Response of T Cells to Antigen. Journal of Immunology, 2011, 187, 6291-6300.	0.8	151
36	Evidence for RGS4 Modulation of Melatonin and Thyrotrophin Signalling Pathways in the Pars Tuberalis. Journal of Neuroendocrinology, 2011, 23, 725-732.	2.6	17

HUGUES DARDENTE

#	Article	IF	CITATIONS
37	A Molecular Switch for Photoperiod Responsiveness in Mammals. Current Biology, 2010, 20, 2193-2198.	3.9	235
38	Effect of Photoperiod on the Thyroid‣timulating Hormone Neuroendocrine System in the European Hamster (<i>Cricetus cricetus</i>). Journal of Neuroendocrinology, 2010, 22, 51-55.	2.6	64
39	<i>Cry1</i> Circadian Phase <i>in vitro</i> : Wrapped Up with an E-Box. Journal of Biological Rhythms, 2009, 24, 16-24.	2.6	31
40	<i>Egr1</i> involvement in evening gene regulation by melatonin. FASEB Journal, 2009, 23, 764-773.	0.5	31
41	Transcriptional feedback loops in the ovine circadian clock. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, 391-398.	1.8	20
42	Neurogenetics of food anticipation. European Journal of Neuroscience, 2009, 30, 1676-1687.	2.6	57
43	Clockâ€dependent and independent transcriptional control of the two isoforms from the mouse <i>Rorγ</i> gene. Genes To Cells, 2008, 13, 1197-1210.	1.2	31
44	RFamideâ€Related Peptide and its Cognate Receptor in the Sheep: cDNA Cloning, mRNA Distribution in the Hypothalamus and the Effect of Photoperiod. Journal of Neuroendocrinology, 2008, 20, 1252-1259.	2.6	132
45	Ancestral TSH Mechanism Signals Summer in a Photoperiodic Mammal. Current Biology, 2008, 18, 1147-1152.	3.9	342
46	Implication of the F-Box Protein FBXL21 in Circadian Pacemaker Function in Mammals. PLoS ONE, 2008, 3, e3530.	2.5	47
47	The circadian clock stops ticking during deep hibernation in the European hamster. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13816-13820.	7.1	121
48	Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression. Biochemical Journal, 2007, 402, 525-536.	3.7	87
49	Expression of Tgfl $$ t in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Neuroscience, 2007, 145, 1138-1143.	2.3	14
50	Molecular Circadian Rhythms in Central and Peripheral Clocks in Mammals. Chronobiology International, 2007, 24, 195-213.	2.0	259
51	Seasonal variations of clock gene expression in the suprachiasmatic nuclei and pars tuberalis of the European hamster (Cricetus cricetus). European Journal of Neuroscience, 2007, 25, 1529-1536.	2.6	36
52	Does a Melatoninâ€Đependent Circadian Oscillator in the Pars Tuberalis Drive Prolactin Seasonal Rhythmicity?. Journal of Neuroendocrinology, 2007, 19, 657-666.	2.6	56
53	Tissue-specific expression of tryptophan hydroxylase mRNAs in the rat midbrain: anatomical evidence and daily profiles. European Journal of Neuroscience, 2005, 22, 895-901.	2.6	98
54	Timed hypocaloric feeding and melatonin synchronize the suprachiasmatic clockwork in rats, but with opposite timing of behavioral output. European Journal of Neuroscience, 2005, 22, 921-929.	2.6	25

HUGUES DARDENTE

#	Article	IF	CITATIONS
55	Feeding Cues Alter Clock Gene Oscillations and Photic Responses in the Suprachiasmatic Nuclei of Mice Exposed to a Light/Dark Cycle. Journal of Neuroscience, 2005, 25, 1514-1522.	3.6	187
56	Differential Control of Bmal1 Circadian Transcription by REV-ERB and ROR Nuclear Receptors. Journal of Biological Rhythms, 2005, 20, 391-403.	2.6	572
57	Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression. Neuroscience, 2004, 127, 529-537.	2.3	30
58	Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Molecular Brain Research, 2004, 124, 143-151.	2.3	123
59	MT1 Melatonin Receptor mRNA Expressing Cells in the Pars Tuberalis of the European Hamster: Effect of Photoperiod. Journal of Neuroendocrinology, 2003, 15, 778-786.	2.6	94
60	Expression and regulation of Icer mRNA in the Syrian hamster pineal gland. Molecular Brain Research, 2003, 112, 163-169.	2.3	11
61	Melatonin induces Cry1 expression in the pars tuberalis of the rat. Molecular Brain Research, 2003, 114, 101-106.	2.3	104
62	Photoperiod differentially regulates clock genes' expression in the suprachiasmatic nucleus of Syrian hamster. Neuroscience, 2003, 118, 317-322.	2.3	94
63	Contrary to other non-photic cues, acute melatonin injection does not induce immediate changes of clock gene mrna expression in the rat suprachiasmatic nuclei. Neuroscience, 2003, 120, 745-755.	2.3	86
64	The mt1 Melatonin Receptor and RORÎ ² Receptor Are Co-localized in Specific TSH-immunoreactive Cells in the Pars Tuberalis of the Rat Pituitary. Journal of Histochemistry and Cytochemistry, 2002, 50, 1647-1657.	2.5	114
65	Per and neuropeptide expression in the rat suprachiasmatic nuclei: compartmentalization and differential cellular induction by light. Brain Research, 2002, 958, 261-271.	2.2	82

Phenotype of Per1- and Per2- expressing neurons in the suprachiasmatic nucleus of a diurnal rodent () Tj ETQq0 0 0 rgBT /Overlock 10 T 2.9 42 310, 85-92.

5