
Stanley H Faeth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10575105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental factors affect the distribution of two <i>Epichloë</i> fungal endophyte species inhabiting a common host grove bluegrass (<i>Poa alsodes</i>). Ecology and Evolution, 2019, 9, 6624-6642.	1.9	16
2	Epichloë endophytes of Poa alsodes employ alternative mechanisms for host defense: insecticidal versus deterrence. Arthropod-Plant Interactions, 2019, 13, 79-90.	1.1	4
3	Antiâ€insect defenses of <i><scp>A</scp>chnatherum robustum</i> (sleepygrass) provided by two <i>Epichloë</i> endophyte species. Entomologia Experimentalis Et Applicata, 2018, 166, 474-482.	1.4	12
4	Interspecific and intraspecific hybrid <i>Epichloë</i> species symbiotic with the North American native grass <i>Poa alsodes</i> . Mycologia, 2017, 109, 459-474.	1.9	30
5	Does hybridization of endophytic symbionts in a native grass increase fitness in resourceâ€limited environments?. Ecology, 2017, 98, 138-149.	3.2	4
6	Performance of Endophyte Infected Tall Fescue in Europe and North America. PLoS ONE, 2016, 11, e0157382.	2.5	17
7	Secondary Metabolites from Fungal Endophytes of Echinacea purpurea Suppress Cytokine Secretion by Macrophage-Type Cells. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	1
8	Urbanization is not associated with increased abundance or decreased richness of terrestrial animals - dissecting the literature through meta-analysis. Urban Ecosystems, 2016, 19, 1251-1264.	2.4	41
9	Effects of Hybrid and Non-hybrid Epichloë Endophytes and Their Associated Host Genotypes on the Response of a Native Grass to Varying Environments. Microbial Ecology, 2016, 72, 185-196.	2.8	5
10	Comparison of electrospray ionization and atmospheric pressure photoionization liquid chromatography mass spectrometry methods for analysis of ergot alkaloids from endophyte-infected sleepygrass (Achnatherum robustum). Journal of Pharmaceutical and Biomedical Analysis, 2016, 117, 11-17.	2.8	21
11	Secondary Metabolites from Fungal Endophytes of Suppress Cytokine Secretion by Macrophage-Type Cells. Natural Product Communications, 2016, 11, 1143-1146.	0.5	4
12	Alkaloid Variation Among Epichloid Endophytes of Sleepygrass (Achnatherum robustum) and Consequences for Resistance to Insect Herbivores. Journal of Chemical Ecology, 2015, 41, 93-104.	1.8	46
13	Plant population and genotype effects override the effects ofEpichloëendophyte species on growth and drought stress response ofAchnatherum robustumplants in two natural grass populations. Journal of Plant Ecology, 2015, , rtv004.	2.3	3
14	Phylogenetic and chemical diversity of fungal endophytes isolated from <i>Silybum marianum</i> (L) Gaertn. (milk thistle). Mycology, 2015, 6, 8-27.	4.4	29
15	Ethanolic Echinacea purpurea Extracts Contain a Mixture of Cytokine-Suppressive and Cytokine-Inducing Compounds, Including Some That Originate from Endophytic Bacteria. PLoS ONE, 2015, 10, e0124276.	2.5	53
16	Bottom–up regulates top–down: the effects of hybridization of grass endophytes on an aphid herbivore and its generalist predator. Oikos, 2014, 123, 545-552.	2.7	15
17	Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi. Bioorganic and Medicinal Chemistry, 2014, 22, 6112-6116.	3.0	76
18	Neotyphodium fungal endophyte in tall fescue (Schedonorus phoenix): a comparison of three Northern European wild populations and the cultivar Kentucky-31. Fungal Diversity, 2013, 60, 15-24.	12.3	22

#	Article	IF	CITATIONS
19	Control of arthropod abundance, richness, and composition in a heterogeneous desert city. Ecological Monographs, 2012, 82, 85-100.	5.4	26
20	Fungal grass endophytes and arthropod communities: lessons from plant defence theory and multitrophic interactions. Fungal Ecology, 2012, 5, 364-371.	1.6	42
21	Variation in arthropod communities in response to urbanization: Seven years of arthropod monitoring in a desert city. Landscape and Urban Planning, 2011, 103, 383-399.	7.5	62
22	Urban biodiversity: patterns and mechanisms. Annals of the New York Academy of Sciences, 2011, 1223, 69-81.	3.8	361
23	Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Diversity, 2011, 47, 109-118.	12.3	39
24	Seedling Blight of Festuca arizonica Caused by Rhizoctonia solani. American Journal of Plant Sciences, 2011, 02, 50-51.	0.8	0
25	Occam's Razor Cuts Both Ways: Endophytes, Resource Allocation, Herbivory, and Mutualism: A Reply to Rudgers et al American Naturalist, 2010, 176, 104-110.	2.1	5
26	Hybridization in Endophyte Symbionts Alters Host Response to Moisture and Nutrient Treatments. Microbial Ecology, 2010, 59, 768-775.	2.8	28
27	Asexual Endophytes in a Native Grass: Tradeoffs in Mortality, Growth, Reproduction, and Alkaloid Production. Microbial Ecology, 2010, 60, 496-504.	2.8	23
28	The Effects of Endophytes on Seed Production and Seed Predation of Tall Fescue and Meadow Fescue. Microbial Ecology, 2010, 60, 928-934.	2.8	35
29	Asexual endophytes and associated alkaloids alter arthropod community structure and increase herbivore abundances on a native grass. Ecology Letters, 2010, 13, 106-117.	6.4	48
30	Reduced Wind Speed Improves Plant Growth in a Desert City. PLoS ONE, 2010, 5, e11061.	2.5	38
31	Inherited microbial symbionts increase herbivore abundances and alter arthropod diversity on a native grass. Ecology, 2010, 91, 1329-1343.	3.2	27
32	Invasion, Competition, and Biodiversity Loss in Urban Ecosystems. BioScience, 2010, 60, 199-208.	4.9	388
33	Effects of urbanization on trophic dynamics of arthropod communities on a common desert host plant. Urban Ecosystems, 2009, 12, 265-286.	2.4	16
34	Asexual Fungal Symbionts Alter Reproductive Allocation and Herbivory over Time in Their Native Perennial Grass Hosts. American Naturalist, 2009, 173, 554-565.	2.1	53
35	Local Adaptation in Festuca arizonica Infected by Hybrid and Nonhybrid Neotyphodium Endophytes. Microbial Ecology, 2008, 55, 697-704.	2.8	26
36	Global Change and the Ecology of Cities. Science, 2008, 319, 756-760.	12.6	4,931

#	Article	IF	CITATIONS
37	An apparent paradox of horizontal and vertical disease transmission. Journal of Biological Dynamics, 2007, 1, 45-62.	1.7	19
38	Search for Cell Motility and Angiogenesis Inhibitors with Potential Anticancer Activity:Â Beauvericin and Other Constituents of Two Endophytic Strains ofFusarium oxysporum1. Journal of Natural Products, 2007, 70, 227-232.	3.0	168
39	13α–Hydroxylucilactaene and Other Metabolites of an Endophytic Strain of Fusarium acuminatum. Natural Product Communications, 2007, 2, 1934578X0700200.	0.5	3
40	Model systems in ecology: dissecting the endophyte–grass literature. Trends in Plant Science, 2006, 11, 428-433.	8.8	265
41	From patterns to emerging processes in mechanistic urban ecology. Trends in Ecology and Evolution, 2006, 21, 186-191.	8.7	947
42	Temporal and Spatial Variation in Alkaloid Levels in Achnatherum robustum, a Native Grass Infected with the Endophyte Neotyphodium. Journal of Chemical Ecology, 2006, 32, 307-324.	1.8	52
43	Does An Asexual Endophyte Symbiont Alter Life Stage and Long-Term Survival in a Perennial Host Grass?. Microbial Ecology, 2006, 52, 748-755.	2.8	39
44	Irrigation and Land Use Drive Ground Arthropod Community Patterns in an Urban Desert. Environmental Entomology, 2006, 35, 1532-1540.	1.4	55
45	Irrigation and Land Use Drive Ground Arthropod Community Patterns in an Urban Desert. Environmental Entomology, 2006, 35, 1532-1540.	1.4	22
46	Trophic Dynamics in Urban Communities. BioScience, 2005, 55, 399.	4.9	363
47	Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecology Letters, 2004, 7, 304-313.	6.4	112
48	Evolution of endophyte?plant symbioses. Trends in Plant Science, 2004, 9, 275-280.	8.8	521
49	Plant Defenses Against Insects: Role of Endophytes. , 2004, , 1-3.		Ο
50	Big Sacaton and Endophyte-Infected Arizona Fescue Germination under Water Stress. Journal of Range Management, 2003, 56, 616.	0.3	29
51	Mutualistic Asexual Endophytes in a Native Grass Are Usually Parasitic. American Naturalist, 2003, 161, 310-325.	2.1	189
52	Endophytic fungi and interactions among host plants, herbivores, and natural enemies. , 2002, , 89-123.		50
53	Fungal Endophytes: Common Host Plant Symbionts but Uncommon Mutualists. Integrative and Comparative Biology, 2002, 42, 360-368.	2.0	241
54	Are endophytic fungi defensive plant mutualists?. Oikos, 2002, 98, 25-36.	2.7	262

#	Article	IF	CITATIONS
55	Peramine alkaloid variation in Neotyphodium-infected Arizona fescue: effects of endophyte and host genotype and environment. Journal of Chemical Ecology, 2002, 28, 1511-1526.	1.8	62
56	DO FUNGAL ENDOPHYTES RESULT IN SELECTION FOR LEAFMINER OVIPOSITIONAL PREFERENCE?. Ecology, 2001, 82, 1097-1111.	3.2	42
57	The Ultimate Basis of the Caching Preferences of Rodents, and the Oak-Dispersal Syndrome: Tannins, Insects, and Seed Germination1. American Zoologist, 2001, 41, 840-851.	0.7	77
58	The Ultimate Basis of the Caching Preferences of Rodents, and the Oak-Dispersal Syndrome: Tannins, Insects, and Seed Germination. American Zoologist, 2001, 41, 840-851.	0.7	73
59	Do Fungal Endophytes Result in Selection for Leafminer Ovipositional Preference?. Ecology, 2001, 82, 1097.	3.2	4
60	Effect of Vertebrate Grazing on Plant and Insect Community Structure. Conservation Biology, 1999, 13, 1047-1054.	4.7	143
61	The evolution of egg clustering in butterflies: A test of the egg desiccation hypothesis. Evolutionary Ecology, 1998, 12, 543-552.	1.2	101
62	Distribution, Abundances, and Associations of the Endophytic Fungal Community of Arizona Fescue (Festuca arizonica). Mycologia, 1998, 90, 569.	1.9	66
63	Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (<i>Festuca arizonica</i>). Mycologia, 1998, 90, 569-578.	1.9	109
64	FUNGAL ENDOPHYTES IN OAK TREES: EXPERIMENTAL ANALYSES OF INTERACTIONS WITH LEAFMINERS. Ecology, 1997, 78, 820-827.	3.2	48
65	The consequences of larval aggregation in the butterfly Chlosyne lacinia. Ecological Entomology, 1997, 22, 408-415.	2.2	120
66	FUNGAL ENDOPHYTES IN OAK TREES: LONG-TERM PATTERNS OF ABUNDANCE AND ASSOCIATIONS WITH LEAFMINERS. Ecology, 1997, 78, 810-819.	3.2	105
67	Ecology and description of a new species of Ophiognomonia endophytic in the leaves of Quercus emoryi. Mycologia, 1997, 89, 537-546.	1.9	14
68	Fungal endophytes and phytochemistry of oak foliage: determinants of oviposition preference of leafminers?. Oecologia, 1996, 108, 728-736.	2.0	29
69	Suppression of Leafminer (Coleoptera: Buprestidae) Populations on Turkey Oak (Fagaceae) Using Implants of Acephate. Environmental Entomology, 1995, 24, 1548-1556.	1.4	3
70	Effect of Endophytic Fungi on Herbivory by Redlegged Grasshoppers (Orthoptera: Acrididae) on Arizona Fescue. Environmental Entomology, 1995, 24, 1576-1580.	1.4	38
71	Ecology of plant-herbivore communities: A fungal component?. Natural Toxins, 1993, 1, 197-208.	1.0	40
72	Endophytic fungi alter foraging and dispersal by desert seed-harvesting ants. Oecologia, 1993, 95, 470-473.	2.0	52

#	Article	IF	CITATIONS
73	Interspecific and Intraspecific Interactions Via Plant Responses to Folivory: An Experimental Field Test. Ecology, 1992, 73, 1802-1813.	3.2	48
74	Do defoliation and subsequent phytochemical responses reduce future herbivory on oak trees?. Journal of Chemical Ecology, 1992, 18, 915-925.	1.8	31
75	Effect of Oak Leaf Size on Abundance, Dispersion, and Survival of the Leafminer Cameraria sp. (Lepidoptera: Gracillariidae). Environmental Entomology, 1991, 20, 196-204.	1.4	52
76	Structural damage to oak leaves alters natural enemy attack on a leafminer. Entomologia Experimentalis Et Applicata, 1990, 57, 57-63.	1.4	21
77	Aggregation of a Leafminer, Cameraria Sp. Nov. (Davis): Consequences and Causes. Journal of Animal Ecology, 1990, 59, 569.	2.8	55
78	Maternal Care in a Lace Bug, <i>Corythucha Hewitti</i> (Hemiptera: Tingidae). Psyche: Journal of Entomology, 1989, 96, 101-110.	0.9	10
79	Abundance and mortality of leaf miners on artificially shaded Emory oak. Ecological Entomology, 1988, 13, 131-142.	2.2	33
80	Plant-Mediated Interactions between Seasonal Herbivores: Enough for Evolution or Coevolution?. , 1988, , 391-414.		21
81	Community Structure and Folivorous Insect Outbreaks: The Roles of Vertical and Horizontal Interactions. , 1987, , 135-171.		50
82	Indirect Interactions Between Temporally Separated Herbivores Mediated by the Host Plant. Ecology, 1986, 67, 479-494.	3.2	232
83	Selective oviposition by a leaf miner in response to temporal variation in abscission. Oecologia, 1986, 69, 117-120.	2.0	48
84	Interacting effects of increased tannin levels on leafâ€mining insects. Entomologia Experimentalis Et Applicata, 1986, 40, 297-301.	1.4	34
85	Patterns of intra- and interspecific association in leaf-mining insects on three oak host species. Ecological Entomology, 1985, 10, 121-129.	2.2	29
86	Quantitative defense theory and patterns of feeding by oak insects. Oecologia, 1985, 68, 34-40.	2.0	61
87	Leafminers on Oak: The Role of Immigration and In Situ Reproductive Recruitment. Ecology, 1983, 64, 191-204.	3.2	55
88	Early Leaf Abscission: A Neglected Source of Mortality for Folivores. American Naturalist, 1981, 117, 409-415.	2.1	155
89	Experimental Isolation of Oak Host Plants: Effects on Mortality, Survivorship, and Abundances of Leaf-Mining Insects. Ecology, 1981, 62, 625-635.	3.2	46
90	Abundances and Diversity of Leaf-Mining Insects on Three Oak Host Species: Effects of Host-Plant Phenology and Nitrogen Content of Leaves. Oikos, 1981, 37, 238.	2.7	96

#	Article	IF	CITATIONS
91	Urban biogeography. Oecologia, 1978, 32, 127-133.	2.0	118