
Xuedong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1057491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Covalent Photoconjugation of Affibodies to Epidermal Growth Factor Receptor (EGFR) on Cellular Quiescence. Biotechnology and Bioengineering, 2022, 119, 187-198.	3.3	1
2	Cannabidiol activates PINK1-Parkin-dependent mitophagy and mitochondrial-derived vesicles. European Journal of Cell Biology, 2022, 101, 151185.	3.6	24
3	Live Cell Imaging of Spatiotemporal Ca2+ Fluctuation Responses to Anticancer Drugs. Methods in Molecular Biology, 2022, 2488, 227-236.	0.9	0
4	Cell type-specific intercellular gene transfer in mammalian cells via transient cell entrapment. Cell Discovery, 2022, 8, 20.	6.7	0
5	Multiomic Analysis Reveals Disruption of Cholesterol Homeostasis by Cannabidiol in Human Cell Lines. Molecular and Cellular Proteomics, 2022, 21, 100262.	3.8	8
6	Suppression of α-catenin and adherens junctions enhances epithelial cell proliferation and motility via TACE-mediated TGF-α autocrine/paracrine signaling. Molecular Biology of the Cell, 2021, 32, 348-361.	2.1	7
7	Treatment of Parkinson's disease in Zebrafish model with a berberine derivative capable of crossing blood brain barrier, targeting mitochondria, and convenient for bioimaging experiments. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 249, 109151.	2.6	13
8	Protocol for Analysis and Consolidation of TrackMate Outputs for Measuring Two-Dimensional Cell Motility using Nuclear Tracking. Journal of Visualized Experiments, 2021, , .	0.3	1
9	Enzymes Photo-Cross-Linked to Live Cell Receptors Retain Activity and EGFR Inhibition after Both Internalization and Recycling. Bioconjugate Chemistry, 2020, 31, 104-112.	3.6	6
10	Programmable Extracellular Vesicles for Macromolecule Delivery and Genome Modifications. Developmental Cell, 2020, 55, 784-801.e9.	7.0	56
11	Histone Deacetylase Inhibition Sensitizes PD1 Blockade–Resistant B-cell Lymphomas. Cancer Immunology Research, 2019, 7, 1318-1331.	3.4	53
12	Temporal Metabolite, Ion, and Enzyme Activity Profiling Using Fluorescence Microscopy and Genetically Encoded Biosensors. Methods in Molecular Biology, 2019, 1978, 343-353.	0.9	3
13	The plant triterpenoid celastrol blocks PINK1-dependent mitophagy by disrupting PINK1's association with the mitochondrial protein TOM20. Journal of Biological Chemistry, 2019, 294, 7472-7487.	3.4	20
14	Structural basis of the phosphorylation-independent recognition of cyclin D1 by the SCF ^{FBXO31} ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 319-324.	7.1	39
15	Genome-wide dose-dependent inhibition of histone deacetylases studies reveal their roles in enhancer remodeling and suppression of oncogenic super-enhancers. Nucleic Acids Research, 2018, 46, 1756-1776.	14.5	58
16	Spatiotemporal Control of TGF-Î ² Signaling with Light. ACS Synthetic Biology, 2018, 7, 443-451.	3.8	34
17	A Reversible and Repeatable Thiol–Ene Bioconjugation for Dynamic Patterning of Signaling Proteins in Hydrogels. ACS Central Science, 2018, 4, 909-916.	11.3	122
18	Dual Perturbation of Electron Transport Chain (ETC) Complex and ATP Synthase Triggers PINK1/Parkinâ€dependent Mitophagy. FASEB Journal, 2018, 32, 543.9.	0.5	1

#	Article	IF	CITATIONS
19	Histone Deacetylase Inhibition Leads to Doseâ€Dependent Suppression of Oncogeneâ€Associated Superâ€Enhancers. FASEB Journal, 2018, 32, 523.13.	0.5	0
20	Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1–Parkin pathway and modulate cellular drug response. Journal of Biological Chemistry, 2017, 292, 15105-15120.	3.4	70
21	Long-term live-cell imaging reveals new roles forSalmonellaeffector proteins SseG and SteA. Cellular Microbiology, 2017, 19, e12641.	2.1	29
22	Genome-wide analysis of Musashi-2 targets reveals novel functions in governing epithelial cell migration. Nucleic Acids Research, 2016, 44, 3788-3800.	14.5	48
23	Modeling keratinocyte wound healing dynamics: Cell–cell adhesion promotes sustained collective migration. Journal of Theoretical Biology, 2016, 400, 103-117.	1.7	54
24	Measuring TGF-β Ligand Dynamics in Culture Medium. Methods in Molecular Biology, 2016, 1344, 379-389.	0.9	5
25	A biosensor for the activity of the "sheddase―TACE (ADAM17) reveals novel and cell type–specific mechanisms of TACE activation. Science Signaling, 2015, 8, rs1.	3.6	18
26	A chemical genetic approach to probe the function of PINK1 in regulating mitochondrial dynamics. Cell Research, 2015, 25, 394-397.	12.0	12
27	Role of Glucose Metabolism and ATP in Maintaining PINK1 Levels during Parkin-mediated Mitochondrial Damage Responses. Journal of Biological Chemistry, 2015, 290, 904-917.	3.4	38
28	Comparative Haploid Genetic Screens Reveal Divergent Pathways in the Biogenesis and Trafficking of Glycophosphatidylinositol-Anchored Proteins. Cell Reports, 2015, 11, 1727-1736.	6.4	37
29	Overexpression of Mps1 in colon cancer cells attenuates the spindle assembly checkpoint and increases aneuploidy. Biochemical and Biophysical Research Communications, 2014, 450, 1690-1695.	2.1	42
30	PINK1 Triggers Autocatalytic Activation of Parkin to Specify Cell Fate Decisions. Current Biology, 2014, 24, 1854-1865.	3.9	83
31	Leader cell positioning drives wound-directed collective migration in TGFÎ ² -stimulated epithelial sheets. Molecular Biology of the Cell, 2014, 25, 1586-1593.	2.1	62
32	Computationally Designed Peptide Inhibitors of the Ubiquitin E3 Ligase SCF ^{Fbx4} . ChemBioChem, 2013, 14, 445-451.	2.6	7
33	UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores. Cell Cycle, 2013, 12, 1292-1302.	2.6	3
34	High-Throughput Screening AlphaScreen Assay for Identification of Small-Molecule Inhibitors of Ubiquitin E3 Ligase SCFSkp2-Cks1. Journal of Biomolecular Screening, 2013, 18, 910-920.	2.6	68
35	The Development of a Novel High Throughput Computational Tool for Studying Individual and Collective Cellular Migration. PLoS ONE, 2013, 8, e82444.	2.5	10
36	Identification and Mechanistic Studies of a Novel Ubiquitin E1 Inhibitor. Journal of Biomolecular Screening, 2012, 17, 421-434.	2.6	42

#	Article	IF	CITATIONS
37	Largazole and Its Derivatives Selectively Inhibit Ubiquitin Activating Enzyme (E1). PLoS ONE, 2012, 7, e29208.	2.5	60
38	The MPS1 Family of Protein Kinases. Annual Review of Biochemistry, 2012, 81, 561-585.	11.1	179
39	Dynamics of TGFâ€Î²/Smad signaling. FEBS Letters, 2012, 586, 1921-1928.	2.8	163
40	Quantitative analysis of transient and sustained transforming growth factorâ€Î² signaling dynamics. Molecular Systems Biology, 2011, 7, 492.	7.2	91
41	Partners in crime: the TGF \hat{I}^2 and MAPK pathways in cancer progression. Cell and Bioscience, 2011, 1, 42.	4.8	80
42	Two LXXLL motifs in the N terminus of Mps1 are required for Mps1 nuclear import during G ₂ /M transition and sustained spindle checkpoint responses. Cell Cycle, 2011, 10, 2742-2750.	2.6	17
43	Structure of p300 bound to MEF2 on DNA reveals a mechanism of enhanceosome assembly. Nucleic Acids Research, 2011, 39, 4464-4474.	14.5	53
44	Cellular Abundance of Mps1 and the Role of Its Carboxyl Terminal Tail in Substrate Recruitment*. Journal of Biological Chemistry, 2010, 285, 38730-38739.	3.4	22
45	Effects of transmembrane and juxtamembrane domains on proliferative ability of TSLP receptor. Molecular Immunology, 2010, 47, 1207-1215.	2.2	3
46	Structural Basis of Selective Ubiquitination of TRF1 by SCFFbx4. Developmental Cell, 2010, 18, 214-225.	7.0	55
47	Measuring the Absolute Abundance of the Smad Transcription Factors Using Quantitative Immunoblotting. Methods in Molecular Biology, 2010, 647, 357-376.	0.9	7
48	Analysis of Ligand-Dependent Nuclear Accumulation of Smads in TGF-Î ² Signaling. Methods in Molecular Biology, 2010, 647, 95-111.	0.9	4
49	Regulation of Kinetochore Recruitment of Two Essential Mitotic Spindle Checkpoint Proteins by Mps1 Phosphorylation. Molecular Biology of the Cell, 2009, 20, 10-20.	2.1	47
50	Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism. Molecular and Cellular Biology, 2009, 29, 1306-1320.	2.3	54
51	Association of v-ErbA with Smad4 Disrupts TGF-Î ² Signaling. Molecular Biology of the Cell, 2009, 20, 1509-1519.	2.1	8
52	Transforming Growth Factor β Depletion Is the Primary Determinant of Smad Signaling Kinetics. Molecular and Cellular Biology, 2009, 29, 2443-2455.	2.3	61
53	Structural and mechanistic insights into Mps1 kinase activation. Journal of Cellular and Molecular Medicine, 2009, 13, 1679-1694.	3.6	35
54	Ligand-dependent ubiquitination of Smad3 is regulated by casein kinase 1 gamma 2, an inhibitor of TGF-β signaling. Oncogene, 2008, 27, 7235-7247.	5.9	32

#	Article	IF	CITATIONS
55	Decoding the quantitative nature of TGF- \hat{I}^2 /Smad signaling. Trends in Cell Biology, 2008, 18, 430-442.	7.9	80
56	A Concise Total Synthesis of Largazole, Solution Structure, and Some Preliminary Structure Activity Relationships. Organic Letters, 2008, 10, 3595-3598.	4.6	75
57	Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling. Genes and Development, 2008, 22, 106-120.	5.9	224
58	A Transcriptional Enhancer from the Coding Region of ADAMTS5. PLoS ONE, 2008, 3, e2184.	2.5	24
59	Identifying pattern-defined regulatory islands in mammalian genomes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10116-10121.	7.1	8
60	Activation of Mps1 Promotes Transforming Growth Factor-Î ² -independent Smad Signaling. Journal of Biological Chemistry, 2007, 282, 18327-18338.	3.4	60
61	Systematic Identification of C.Âelegans miRISC Proteins, miRNAs, and mRNA Targets by Their Interactions with GW182 Proteins AIN-1 and AIN-2. Molecular Cell, 2007, 28, 598-613.	9.7	226
62	Unraveling transcriptional control and cis-regulatory codes using the software suite GeneACT. Genome Biology, 2006, 7, R97.	9.6	12
63	Ubc9 expression is essential for myotube formation in C2C12. Experimental Cell Research, 2006, 312, 2132-2141.	2.6	30
64	SUMO-1 modification of MEF2A regulates its transcriptional activity. Journal of Cellular and Molecular Medicine, 2006, 10, 132-144.	3.6	45
65	A Method of Mapping Protein Sumoylation Sites by Mass Spectrometry Using a Modified Small Ubiquitin-like Modifier 1 (SUMO-1) and a Computational Program. Molecular and Cellular Proteomics, 2005, 4, 1626-1636.	3.8	52
66	Ubiquitination of p27 Requires Physical Interaction with Cyclin E and Probable Phosphate Recognition by SKP2. Journal of Biological Chemistry, 2005, 280, 30301-30309.	3.4	34
67	Pathway- and Expression Level-Dependent Effects of Oncogenic N-Ras: p27Kip1 Mislocalization by the Ral-GEF Pathway and Erk-Mediated Interference with Smad Signaling. Molecular and Cellular Biology, 2005, 25, 8239-8250.	2.3	52
68	Ubiquitination of p21Cip1/WAF1by SCFSkp2: Substrate Requirement and Ubiquitination Site Selectionâ€. Biochemistry, 2005, 44, 14553-14564.	2.5	67
69	High-Throughput Gateway Bicistronic Retroviral Vectors for Stable Expression in Mammalian Cells: Exploring the Biologic Effects of STAT5 Overexpression. DNA and Cell Biology, 2004, 23, 355-365.	1.9	16
70	Molecular and Biochemical Characterization of the Skp2-Cks1 Binding Interface. Journal of Biological Chemistry, 2004, 279, 51362-51369.	3.4	13
71	Ubiquitination and Proteolysis of Cancer-Derived Smad4 Mutants by SCF Skp2. Molecular and Cellular Biology, 2004, 24, 7524-7537.	2.3	79
72	Negative regulation of SCFSkp2 ubiquitin ligase by TGF-β signaling. Oncogene, 2004, 23, 1064-1075.	5.9	45

#	Article	IF	CITATIONS
73	Control of cell cycle-dependent degradation of c-Ski proto-oncoprotein by Cdc34. Oncogene, 2004, 23, 5643-5653.	5.9	28
74	A Negatively Charged Amino Acid in Skp2 Is Required for Skp2-Cks1 Interaction and Ubiquitination of p27Kip1. Journal of Biological Chemistry, 2003, 278, 32390-32396.	3.4	24
75	Identification of Novel Protein-Protein Interactions Using A Versatile Mammalian Tandem Affinity Purification Expression System. Molecular and Cellular Proteomics, 2003, 2, 1225-1233.	3.8	108
76	Ski/Sno and TGF-Î ² signaling. Cytokine and Growth Factor Reviews, 2001, 12, 1-8.	7.2	192
77	The Anaphase-Promoting Complex Mediates TGF-β Signaling by Targeting SnoN for Destruction. Molecular Cell, 2001, 8, 1027-1039.	9.7	172
78	Peroxisome Proliferator-activated Receptor Î ³ Inhibits Transforming Growth Factor Î ² -induced Connective Tissue Growth Factor Expression in Human Aortic Smooth Muscle Cells by Interfering with Smad3. Journal of Biological Chemistry, 2001, 276, 45888-45894.	3.4	162
79	A Novel Mechanism for Regulating Transforming Growth Factor β (TGF-β) Signaling. Journal of Biological Chemistry, 2001, 276, 39608-39617.	3.4	169
80	Generation of Mammalian Cells Stably Expressing Multiple Genes at Predetermined Levels. Analytical Biochemistry, 2000, 280, 20-28.	2.4	139
81	Disruption of TGF-Î ² growth inhibition by oncogenic ras is linked to p27Kip1 mislocalization. Oncogene, 2000, 19, 5926-5935.	5.9	57
82	Importin Î ² Mediates Nuclear Translocation of Smad 3. Journal of Biological Chemistry, 2000, 275, 23425-23428.	3.4	148
83	A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7853-7858.	7.1	113
84	Transforming Growth Factor-β Induces Formation of a Dithiothreitol-resistant Type I/Type II Receptor Complex in Live Cells. Journal of Biological Chemistry, 1999, 274, 5716-5722.	3.4	54
85	SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signaling. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12442-12447.	7.1	245
86	Interaction of the Ski Oncoprotein with Smad3 Regulates TGF-β Signaling. Molecular Cell, 1999, 4, 499-509.	9.7	257
87	Activation of the erythropoietin receptor by the gp55-P viral envelope protein is determined by a single amino acid in its transmembrane domain. EMBO Journal, 1999, 18, 3334-3347.	7.8	55
88	The Anemic Friend Virus gp55 Envelope Protein Induces Erythroid Differentiation in Fetal Liver Colony-Forming Units-Erythroid. Blood, 1998, 91, 1163-1172.	1.4	33
89	Transforming growth factor β-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10669-10674.	7.1	339
90	Estrogen-Related Receptor Â1 Functionally Binds as a Monomer to Extended Half-Site Sequences Including Ones Contained within Estrogen-Response Elements. Molecular Endocrinology, 1997, 11, 342-352.	3.7	92