
Han-Min Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1057475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green and Facile Preparation of Regular Lignin Nanoparticles with High Yield and Their Natural Broad-Spectrum Sunscreens. ACS Sustainable Chemistry and Engineering, 2019, 7, 2658-2666.	6.7	148
2	Structural and Morphological Transformations of Lignin Macromolecules during Bio-Based Deep Eutectic Solvent (DES) Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 2130-2137.	6.7	131
3	Structural Characteristics of Lignin Macromolecules from Different <i>Eucalyptus</i> Species. ACS Sustainable Chemistry and Engineering, 2017, 5, 11618-11627.	6.7	122
4	Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chemistry, 2021, 23, 3790-3817.	9.0	114
5	Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II). Industrial Crops and Products, 2017, 108, 72-80.	5.2	88
6	Tunable, UV-shielding and biodegradable composites based on well-characterized lignins and poly(butylene adipate- <i>co</i> -terephthalate). Green Chemistry, 2020, 22, 8623-8632.	9.0	59
7	Structural Variations of Lignin Macromolecules from Early Growth Stages of Poplar Cell Walls. ACS Sustainable Chemistry and Engineering, 2020, 8, 1813-1822.	6.7	56
8	Structural elucidation of lignin macromolecule from abaca during alkaline hydrogen peroxide delignification. International Journal of Biological Macromolecules, 2020, 144, 596-602.	7.5	51
9	Amination of biorefinery technical lignins using Mannich reaction synergy with subcritical ethanol depolymerization. International Journal of Biological Macromolecules, 2018, 107, 426-435.	7.5	45
10	Green and efficient conversion strategy of Eucalyptus based on mechanochemical pretreatment. Energy Conversion and Management, 2018, 175, 112-120.	9.2	39
11	Unraveling the Fate of Lignin from Eucalyptus and Poplar during Integrated Delignification and Bleaching. ChemSusChem, 2019, 12, 1059-1068.	6.8	37
12	Assessment of integrated process based on autohydrolysis and robust delignification process for enzymatic saccharification of bamboo. Bioresource Technology, 2017, 244, 717-725.	9.6	35
13	Technical Lignin Valorization in Biodegradable Polyester-Based Plastics (BPPs). ACS Sustainable Chemistry and Engineering, 2021, 9, 12017-12042.	6.7	33
14	Insights into the Structural Changes and Potentials of Lignin from Bagasse during the Integrated Delignification Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 13886-13897.	6.7	32
15	Effect of integrated treatment on improving the enzymatic digestibility of poplar and the structural features of isolated hemicelluloses. Carbohydrate Polymers, 2021, 252, 117164.	10.2	27
16	Revealing structural and functional specificity of lignin from tobacco stalk during deep eutectic solvents deconstruction aiming to targeted valorization. Industrial Crops and Products, 2022, 180, 114696.	5.2	25
17	Fractionation of technical lignin and its application on the lignin/poly-(butylene) Tj ETQq1 1 0.784314 rgBT /Ove 209, 1065-1074.	rlock 10 T 7.5	f 50 107 Td 25
18	Structural elucidation of tobacco stalk lignin isolated by different integrated processes. Industrial Crops and Products, 2019, 140, 111631.	5.2	23

2

HAN-MIN WANG

#	Article	IF	CITATIONS
19	Chemosynthesis, characterization and application of lignin-based ï¬,occulants with tunable performance prepared by short-wavelength ultraviolet initiation. Industrial Crops and Products, 2020, 157, 112897.	5.2	20
20	Comparative study of hemicelluloses from Hybrid Pennisetum via a green and clean integrated process. Carbohydrate Polymers, 2019, 205, 135-142.	10.2	18
21	Structural Transformations of Hybrid <i>Pennisetum</i> Lignin: Effect of Microwave-Assisted Hydrothermal Pretreatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 3073-3082.	6.7	15
22	Understanding the Structural Changes of Lignin Macromolecules From Balsa Wood at Different Growth Stages. Frontiers in Energy Research, 2020, 8, .	2.3	14
23	Multiple Analysis and Characterization of Novel and Environmentally Friendly Feather Protein-Based Wood Preservatives. Polymers, 2020, 12, 237.	4.5	9
24	Value-added products from lignin: IsolationValue-added products from lignin: Isolation, characterization and applications. , 2021, , 33-55.		2