Arijit Basu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10572227/publications.pdf

Version: 2024-02-01

		516710	361022
36	1,261	16	35
papers	citations	h-index	g-index
38	38	38	2121
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ion Exchange Nanoparticles for Ophthalmic Drug Delivery. Bioconjugate Chemistry, 2020, 31, 2726-2736.	3.6	2
2	Biodegradable Poly(Acetonide Gluconic Acid) for Controlled Drug Delivery. Biomacromolecules, 2019, 20, 2934-2941.	5 . 4	8
3	Recent Advances in Polyanhydride Based Biomaterials. Advanced Materials, 2018, 30, e1706815.	21.0	64
4	Synthesis, characterization and antibacterial activity of heterocyclic quaternary ammonium polymers. New Journal of Chemistry, 2018, 42, 15427-15435.	2.8	16
5	Cationic antimicrobial copolymer poly (methylmethacrylateâ€coâ€PHMG) decontaminates water. Polymers for Advanced Technologies, 2017, 28, 1334-1338.	3.2	8
6	Stable polyanhydride synthesized from sebacic acid and ricinoleic acid. Journal of Controlled Release, 2017, 257, 156-162.	9.9	13
7	Poly(lactic acid)â€based nanocomposites. Polymers for Advanced Technologies, 2017, 28, 919-930.	3.2	52
8	Synthesis of glycopeptides from glucosaminic acid. Journal of Polymer Science Part A, 2017, 55, 2657-2662.	2.3	10
9	Comparative evaluation of polycyanoacrylates. Acta Biomaterialia, 2017, 48, 390-400.	8.3	18
10	Alternating Poly(ester-anhydride) by Insertion Polycondensation. Biomacromolecules, 2016, 17, 2253-2259.	5.4	13
11	Biodegradable inflatable balloons for tissue separation. Biomaterials, 2016, 105, 109-116.	11.4	9
12	Poly(\hat{l}_{\pm} -hydroxy acid)s and poly(\hat{l}_{\pm} -hydroxy acid-co- \hat{l}_{\pm} -amino acid)s derived from amino acid. Advanced Drug Delivery Reviews, 2016, 107, 82-96.	13.7	40
13	Discovering Novel and Diverse Iron-Chelators in Silico. Journal of Chemical Information and Modeling, 2016, 56, 2476-2485.	5.4	9
14	Injectable formulations of poly(lactic acid) and its copolymers in clinical use. Advanced Drug Delivery Reviews, 2016, 107, 213-227.	13.7	122
15	Poly(lactic acid) based hydrogels. Advanced Drug Delivery Reviews, 2016, 107, 192-205.	13.7	128
16	PEGâ€Biscyanoacrylate Crosslinker for Octyl Cyanoacrylate Bioadhesive. Macromolecular Rapid Communications, 2016, 37, 251-256.	3.9	9
17	Glycopeptides derived from glucosaminic acid. Polymer Chemistry, 2016, 7, 4447-4452.	3.9	8
18	Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics. Journal of Biological Chemistry, 2016, 291, 13855-13863.	3.4	17

#	Article	IF	Citations
19	Polysaccharide-Based Conjugates for Biomedical Applications. Bioconjugate Chemistry, 2015, 26, 1396-1412.	3.6	169
20	Castor Oil-Based Biodegradable Polyesters. Biomacromolecules, 2015, 16, 2572-2587.	5.4	124
21	Exploring Different Virtual Screening Strategies for Acetylcholinesterase Inhibitors. BioMed Research International, 2013, 2013, 1-8.	1.9	13
22	Hydroxamates as Ribonucleotide Reductase Inhibitors., 2013,, 153-172.		0
23	Understanding the molecular interactions of different radical scavengers with ribonucleotide reductase M2 (hRRM2) domain: opening the gates and gaining access. Journal of Computer-Aided Molecular Design, 2012, 26, 865-881.	2.9	1
24	Effect of substitution at N″-position of N′-hydroxy-N-amino guanidines on tumor cell growth. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4934-4938.	2.2	3
25	A novel N-hydroxy-N′-aminoguanidine derivative inhibits ribonucleotide reductase activity: Effects in human HL-60 promyelocytic leukemia cells and synergism with arabinofuranosylcytosine (Ara-C). Biochemical Pharmacology, 2011, 81, 50-59.	4.4	12
26	Chemical scaffolds with structural similarities to siderophores of nonribosomal peptide–polyketide origin as novel antimicrobials against Mycobacterium tuberculosis and Yersinia pestis. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6533-6537.	2.2	19
27	Synthesis, Antimicrobial and Anticancer Activity of New Thiosemicarbazone Derivatives. Archiv Der Pharmazie, 2011, 344, 84-90.	4.1	47
28	N-Hydroxy-N′-aminoguanidines as anti-cancer lead molecule: QSAR, synthesis and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3324-3328.	2.2	17
29	Pyrazoline based MAO inhibitors: Synthesis, biological evaluation and SAR studies. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4296-4300.	2.2	39
30	Development of selective and reversible pyrazoline based MAO-A inhibitors: Synthesis, biological evaluation and docking studies. Bioorganic and Medicinal Chemistry, 2010, 18, 1875-1881.	3.0	48
31	Towards development of selective and reversible pyrazoline based MAO-inhibitors: Synthesis, biological evaluation and docking studies. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 132-136.	2.2	66
32	Design, synthesis and anticancer activity of piperazine hydroxamates and their histone deacetylase (HDAC) inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3906-3910.	2.2	45
33	Development of CoMFA and CoMSIA models of cytotoxicity data of anti-HIV-1-phenylamino-1H-imidazole derivatives. European Journal of Medicinal Chemistry, 2009, 44, 2400-2407.	5.5	30
34	Structure based virtual screening of GSK- $3\hat{l}^2$: Importance of protein flexibility and induced fit. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5582-5585.	2.2	9
35	A utility script for automating and integrating AutoDock and other associated programs for virtual screening. Bioinformation, 2009, 4, 84-86.	0.5	8
36	Synthesis and Ribonucleotide reductase inhibitory activity of thiosemicarbazones. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6248-6250.	2.2	35