Volker Gerke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1057177/publications.pdf

Version: 2024-02-01

163 papers 13,176 citations

54 h-index 23514 111 g-index

168 all docs

168
docs citations

168 times ranked 12192 citing authors

#	Article	IF	CITATIONS
1	Spire1 and Myosin Vc promote Ca2+-evoked externalization of von Willebrand factor in endothelial cells. Cellular and Molecular Life Sciences, 2022, 79, 96.	2.4	5
2	JAM-A interacts with $\hat{l}\pm3\hat{l}^21$ integrin and tetraspanins CD151 and CD9 to regulate collective cell migration of polarized epithelial cells. Cellular and Molecular Life Sciences, 2022, 79, 88.	2.4	13
3	A JAM-A–tetraspanin–αvβ5 integrin complex regulates contact inhibition of locomotion. Journal of Cell Biology, 2022, 221, .	2.3	6
4	Tip-end fusion of a rod-shaped secretory organelle. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	2
5	Acidification of endothelial Weibel-Palade bodies is mediated by the vacuolar-type H+-ATPase. PLoS ONE, 2022, 17, e0270299.	1.1	4
6	Obituary for Annette Draeger. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118973.	1.9	1
7	Polythiolactoneâ€Decorated Silica Particles: A Versatile Approach for Surface Functionalization, Catalysis and Encapsulation. Chemistry - A European Journal, 2021, 27, 7592-7592.	1.7	2
8	Polythiolactoneâ€Decorated Silica Particles: A Versatile Approach for Surface Functionalization, Catalysis and Encapsulation. Chemistry - A European Journal, 2021, 27, 7667-7676.	1.7	9
9	CHIMs are versatile cholesterol analogs mimicking and visualizing cholesterol behavior in lipid bilayers and cells. Communications Biology, 2021, 4, 720.	2.0	13
10	Plasma membrane wound repair is characterized by extensive membrane lipid and protein rearrangements in vascular endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118991.	1.9	15
11	Biodegradable and Dualâ€Responsive Polypeptideâ€Shelled Cyclodextrinâ€Containers for Intracellular Delivery of Membraneâ€Impermeable Cargo. Advanced Science, 2021, 8, 2100694.	5.6	8
12	ANO5 in membrane repair - Status: "lt's complicated― Cell Calcium, 2021, 97, 102415.	1.1	1
13	TSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation. Molecular Cell, 2021, 81, 2705-2721.e8.	4.5	25
14	Induction of Ca2+-Dependent Exocytotic Processes by Laser Ablation of Endothelial Cells. Methods in Molecular Biology, 2021, 2233, 287-300.	0.4	4
15	Weibel Palade Bodies: Unique Secretory Organelles of Endothelial Cells that Control Blood Vessel Homeostasis. Frontiers in Cell and Developmental Biology, 2021, 9, 813995.	1.8	26
16	Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerging Microbes and Infections, 2020, 9, 2245-2255.	3.0	129
17	Special Issue "Recent Developments in Annexin Biology― Cells, 2020, 9, 2477.	1.8	O
18	An Imidazoliumâ€Based Lipid Analogue as a Gene Transfer Agent. Chemistry - A European Journal, 2020, 26, 17176-17182.	1.7	12

#	Article	IF	CITATIONS
19	Annexin A4 Nâ€terminal peptide inhibits adenylyl cyclase 5 and limits βâ€adrenoceptorâ€mediated prolongation of cardiac action potential. FASEB Journal, 2020, 34, 10489-10504.	0.2	9
20	Membrane Binding Promotes Annexin A2 Oligomerization. Cells, 2020, 9, 1169.	1.8	10
21	Exploring Biased Agonism at FPR1 as a Means to Encode Danger Sensing. Cells, 2020, 9, 1054.	1.8	8
22	The mitochondrial outer membrane protein SYNJ2BP interacts with the cell adhesion molecule TMIGD1 and can recruit it to mitochondria. BMC Molecular and Cell Biology, 2020, 21, 30.	1.0	20
23	Plasma membrane phosphatidylinositol (4,5)-bisphosphate promotes Weibel–Palade body exocytosis. Life Science Alliance, 2020, 3, e202000788.	1.3	6
24	The annexin A1/FPR2 signaling axis expands alveolar macrophages, limits viral replication, and attenuates pathogenesis in the murine influenza A virus infection model. FASEB Journal, 2019, 33, 12188-12199.	0.2	43
25	Annexins and plasma membrane repair. Current Topics in Membranes, 2019, 84, 43-65.	0.5	34
26	Controlled Cellular Delivery of Amphiphilic Cargo by Redoxâ€Responsive Nanocontainers. Advanced Science, 2019, 6, 1901935.	5.6	14
27	Analysis of Ca2+-Dependent Weibel–Palade Body Tethering by Live Cell TIRF Microscopy: Involvement of a Munc13-4/S100A10/Annexin A2 Complex. Methods in Molecular Biology, 2019, 1929, 437-445.	0.4	3
28	Polymer Nanocontainers: Controlled Cellular Delivery of Amphiphilic Cargo by Redoxâ€Responsive Nanocontainers (Adv. Sci. 24/2019). Advanced Science, 2019, 6, 1970146.	5.6	0
29	Actin dynamics during Ca2+-dependent exocytosis of endothelial Weibel-Palade bodies. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1218-1229.	1.9	15
30	Hydrogen peroxide is a neuronal alarmin that triggers specific RNAs, local translation of Annexin A2, and cytoskeletal remodeling in Schwann cells. Rna, 2018, 24, 915-925.	1.6	14
31	Cooperative binding promotes demand-driven recruitment of AnxA8 to cholesterol-containing membranes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 349-358.	1.2	16
32	Dissipative Microgravimetry to Study the Binding Dynamics of the Phospholipid Binding Protein Annexin A2 to Solid-supported Lipid Bilayers Using a Quartz Resonator. Journal of Visualized Experiments, 2018, , .	0.2	3
33	Bridging of membrane surfaces by annexin A2. Scientific Reports, 2018, 8, 14662.	1.6	18
34	Addressable Cholesterol Analogs for Live Imaging of Cellular Membranes. Cell Chemical Biology, 2018, 25, 952-961.e12.	2.5	22
35	Late Endosomal/Lysosomal Cholesterol Accumulation Is a Host Cell-Protective Mechanism Inhibiting Endosomal Escape of Influenza A Virus. MBio, 2018, 9, .	1.8	59
36	Regulation of von-Willebrand Factor Secretion from Endothelial Cells by the Annexin A2-S100A10 Complex. International Journal of Molecular Sciences, 2018, 19, 1752.	1.8	26

#	Article	IF	CITATIONS
37	Phosphorescent cationic iridium(<scp>iii</scp>) complexes dynamically bound to cyclodextrin vesicles: applications in live cell imaging. Chemical Science, 2018, 9, 7822-7828.	3.7	21
38	Reversible Stabilisierung von Vesikeln: redoxâ€responsive Polymerâ€Nanocontainer für den Transport in das Zellinnere. Angewandte Chemie, 2017, 129, 9732-9736.	1.6	11
39	Reversible Stabilization of Vesicles: Redoxâ€Responsive Polymer Nanocontainers for Intracellular Delivery. Angewandte Chemie - International Edition, 2017, 56, 9603-9607.	7.2	54
40	A novel Munc13-4/S100A10/annexin A2 complex promotes Weibel–Palade body exocytosis in endothelial cells. Molecular Biology of the Cell, 2017, 28, 1688-1700.	0.9	36
41	Imidazolium Salts Mimicking the Structure of Natural Lipids Exploit Remarkable Properties Forming Lamellar Phases and Giant Vesicles. Langmuir, 2017, 33, 1333-1342.	1.6	54
42	Rab35 protein regulates evoked exocytosis of endothelial Weibel–Palade bodies. Journal of Biological Chemistry, 2017, 292, 11631-11640.	1.6	35
43	Annexin A2 is involved in Ca 2+ -dependent plasma membrane repair in primary human endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1046-1053.	1.9	45
44	Innenrücktitelbild: Reversible Stabilisierung von Vesikeln: redoxâ€responsive Polymerâ€Nanocontainer für den Transport in das Zellinnere (Angew. Chem. 32/2017). Angewandte Chemie, 2017, 129, 9753-9753.	1.6	0
45	Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair. Nature Communications, 2017, 8, 1623.	5. 8	128
46	Modeling of annexin A2â€"Membrane interactions by molecular dynamics simulations. PLoS ONE, 2017, 12, e0185440.	1.1	26
47	VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation. Molecular Biology of the Cell, 2016, 27, 2811-2821.	0.9	20
48	Annexins A2 and A8 in endothelial cell exocytosis and the control of vascular homeostasis. Biological Chemistry, 2016, 397, 995-1003.	1.2	15
49	Mode of Ezrin-Membrane Interaction as a Function of PIP 2 Binding and Pseudophosphorylation. Biophysical Journal, 2016, 110, 2710-2719.	0.2	25
50	Ezrin interacts with the scaffold protein IQGAP1 and affects its cortical localization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2086-2094.	1.9	11
51	JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nature Communications, 2015, 6, 8128.	5.8	44
52	Annexin A4 is a novel direct regulator of adenylyl cyclase type 5. FASEB Journal, 2015, 29, 3773-3787.	0.2	27
53	Annexin A8 controls leukocyte recruitment to activated endothelial cells via cell surface delivery of CD63. Nature Communications, 2014, 5, 3738.	5.8	47
54	Formation and Characterization of Supported Lipid Bilayers Containing Phosphatidylinositol-4,5-bisphosphate and Cholesterol as Functional Surfaces. Langmuir, 2014, 30, 14877-14886.	1.6	16

#	Article	lF	Citations
55	Importance of phospholipid bilayer integrity in the analysis of protein–lipid interactions. Biochemical and Biophysical Research Communications, 2014, 453, 143-147.	1.0	5
56	Phosphatidylinositol 4,5-Bisphosphate Alters the Number of Attachment Sites between Ezrin and Actin Filaments. Journal of Biological Chemistry, 2014, 289, 9833-9843.	1.6	41
57	Cooperative Binding of Annexin A2 to Cholesterol- and Phosphatidylinositol-4,5-Bisphosphate-Containing Bilayers. Biophysical Journal, 2014, 107, 2070-2081.	0.2	31
58	Evolutionary and Molecular Facts Link the WWC Protein Family to Hippo Signaling. Molecular Biology and Evolution, 2014, 31, 1710-1723.	3.5	57
59	The tumor suppressor annexin A10 is a novel component of nuclear paraspeckles. Cellular and Molecular Life Sciences, 2014, 71, 311-329.	2.4	16
60	Disruption of the annexin A1/S100A11 complex increases the migration and clonogenic growth by dysregulating epithelial growth factor (EGF) signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1700-1711.	1.9	36
61	Lipid Segregation and Membrane Budding Induced by the Peripheral Membrane Binding Protein Annexin A2*. Journal of Biological Chemistry, 2013, 288, 24764-24776.	1.6	79
62	Annexin A6-Balanced Late Endosomal Cholesterol Controls Influenza A Replication and Propagation. MBio, 2013, 4, e00608-13.	1.8	43
63	Tetraspanin CD9 links junctional adhesion molecule-A to αvβ3 integrin to mediate basic fibroblast growth factor–specific angiogenic signaling. Molecular Biology of the Cell, 2013, 24, 933-944.	0.9	50
64	cAMP-induced secretion of endothelial von Willebrand factor is regulated by a phosphorylation/dephosphorylation switch in annexin A2. Blood, 2013, 122, 1042-1051.	0.6	56
65	Transcriptional Profiling of Human Monocytes Identifies the Inhibitory Receptor CD300a as Regulator of Transendothelial Migration. PLoS ONE, 2013, 8, e73981.	1.1	7
66	Regulation of Mitochondrial Morphogenesis by Annexin A6. PLoS ONE, 2013, 8, e53774.	1.1	53
67	aPKC phosphorylates JAM-A at Ser285 to promote cell contact maturation and tight junction formation. Journal of Cell Biology, 2012, 196, 623-639.	2.3	92
68	N-terminal acetylation of annexin A2 is required for S100A10 binding. Biological Chemistry, 2012, 393, 1141-1150.	1.2	29
69	Annexin A1 and A2: Roles in Retrograde Trafficking of Shiga Toxin. PLoS ONE, 2012, 7, e40429.	1.1	20
70	Activation of F-Actin Binding Capacity of Ezrin: Synergism of PIP2 Interaction and Phosphorylation. Biophysical Journal, 2011, 100, 1708-1717.	0.2	60
71	Myosin Va Acts in Concert with Rab27a and MyRIP to Regulate Acute Vonâ€Willebrand Factor Release from Endothelial Cells. Traffic, 2011, 12, 1371-1382.	1.3	64
72	VAMP3 is associated with endothelial Weibel–Palade bodies and participates in their Ca2+-dependent exocytosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1038-1044.	1.9	61

#	Article	IF	Citations
73	Annexin A1 released from apoptotic cells acts through formyl peptide receptors to dampen inflammatory monocyte activation via JAK/STAT/SOCS signalling. EMBO Molecular Medicine, $2011, 3, 102-114$.	3.3	80
74	Annexin A1 is a new functional linker between actin filaments and phagosomes during phagocytosis. Journal of Cell Science, 2011, 124, 578-588.	1.2	40
75	S100P Is a Novel Interaction Partner and Regulator of IQGAP1. Journal of Biological Chemistry, 2011, 286, 7227-7238.	1.6	49
76	The frontotemporal dementia mutation R406W blocks tau's interaction with the membrane in an annexin A2–dependent manner. Journal of Cell Biology, 2011, 192, 647-661.	2.3	117
77	von Willebrand factor folds into a bouquet. EMBO Journal, 2011, 30, 3880-3881.	3.5	4
78	Role of Annexin A2 in the Production of Infectious Hepatitis C Virus Particles. Journal of Virology, 2010, 84, 5775-5789.	1.5	114
79	Generation and characterization of a novel, permanently active S100P mutant. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1078-1085.	1.9	7
80	Phospholipase D1 is specifically required for regulated secretion of von Willebrand factor from endothelial cells. Blood, 2009, 113, 973-980.	0.6	62
81	The annexin 2-S100A10 complex and its association with TRPV6 is regulated by cAMP/PKA/CnA in airway and gut epithelia. Cell Calcium, 2008, 44, 147-157.	1.1	39
82	Defective formation of PKA/CnA-dependent annexin 2–S100A10/CFTR complex in ΔF508 cystic fibrosis cells. Cellular Signalling, 2008, 20, 1073-1083.	1.7	12
83	Actin Binding of Ezrin Is Activated by Specific Recognition of PIP ₂ -Functionalized Lipid Bilayers. Biochemistry, 2008, 47, 3762-3769.	1.2	37
84	Annexin A8 Regulates Late Endosome Organization and Function. Molecular Biology of the Cell, 2008, 19, 5267-5278.	0.9	46
85	Tyrosine phosphorylation of annexin A2 regulates Rho-mediated actin rearrangement and cell adhesion. Journal of Cell Science, 2008, 121, 2177-2185.	1.2	131
86	Characterization of the Ca2+-regulated Ezrin-S100P Interaction and Its Role in Tumor Cell Migration. Journal of Biological Chemistry, 2008, 283, 29331-29340.	1.6	68
87	A common haplotype of the annexin A5 (ANXA5) gene promoter is associated with recurrent pregnancy loss. Human Molecular Genetics, 2007, 16, 573-578.	1.4	107
88	The Formation of the cAMP/Protein Kinase A-dependent Annexin 2–S100A10 Complex with Cystic Fibrosis Conductance Regulator Protein (CFTR) Regulates CFTR Channel Function. Molecular Biology of the Cell, 2007, 18, 3388-3397.	0.9	50
89	PTEN-Mediated Apical Segregation of Phosphoinositides Controls Epithelial Morphogenesis through Cdc42. Cell, 2007, 128, 383-397.	13.5	653
90	S100A10/p11: family, friends and functions. Pflugers Archiv European Journal of Physiology, 2007, 455, 575-582.	1.3	180

#	Article	IF	Citations
91	Cooperative Adsorption of Ezrin on PIP2-Containing Membranesâ€. Biochemistry, 2006, 45, 13025-13034.	1.2	54
92	Annexin A8 displays unique phospholipid and F-actin binding properties. FEBS Letters, 2006, 580, 2430-2434.	1.3	72
93	Proteolytic cleavage of annexin 1 by human leukocyte elastase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1320-1324.	1.9	51
94	Deletion of Annexin 2 Light Chain p11 in Nociceptors Causes Deficits in Somatosensory Coding and Pain Behavior. Journal of Neuroscience, 2006, 26, 10499-10507.	1.7	51
95	Requirement for Annexin A1 in Plasma Membrane Repair. Journal of Biological Chemistry, 2006, 281, 35202-35207.	1.6	199
96	Identification of an AHNAK Binding Motif Specific for the Annexin2/S100A10 Tetramer. Journal of Biological Chemistry, 2006, 281, 35030-35038.	1.6	37
97	Annexin 2 Promotes the Formation of Lipid Microdomains Required for Calcium-regulated Exocytosis of Dense-Core Vesicles. Molecular Biology of the Cell, 2005, 16, 1108-1119.	0.9	131
98	Annexins: linking Ca2+ signalling to membrane dynamics. Nature Reviews Molecular Cell Biology, 2005, 6, 449-461.	16.1	1,234
99	Phosphatidylserine Membrane Domain Clustering Induced by Annexin A2/S100A10 Heterotetramerâ€. Biochemistry, 2005, 44, 15296-15303.	1.2	60
100	S100 Family Members and Trypsinogens Are Predictors of Distant Metastasis and Survival in Early-Stage Non-Small Cell Lung Cancer. Cancer Research, 2004, 64, 5564-5569.	0.4	169
101	Annexin II Is Required for Apical Transport in Polarized Epithelial Cells. Journal of Biological Chemistry, 2004, 279, 3680-3684.	1.6	83
102	Annexin 2 is a phosphatidylinositol (4,5)-bisphosphate binding protein recruited to actin assembly sites at cellular membranes. Journal of Cell Science, 2004, 117, 3473-3480.	1.2	153
103	Annexin-Actin Interactions. Traffic, 2004, 5, 571-576.	1.3	238
104	Rab3D and annexin A2 play a role in regulated secretion of vWF, but not tPA, from endothelial cells. EMBO Journal, 2004, 23, 2982-2992.	3.5	106
105	Structural and functional characterisation of the mouse annexin A9 promoter. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1742, 141-149.	1.9	5
106	The Molecular Arrangement of Membrane-Bound Annexin A2-S100A10 Tetramer as Revealed by Scanning Force Microscopy. ChemBioChem, 2004, 5, 1003-1006.	1.3	33
107	An Annexin 1 N-Terminal Peptide Activates Leukocytes by Triggering Different Members of the Formyl Peptide Receptor Family. Journal of Immunology, 2004, 172, 7669-7676.	0.4	137
108	Annexins – unique membrane binding proteins with diverse functions. Journal of Cell Science, 2004, 117, 2631-2639.	1.2	541

#	Article	IF	Citations
109	Specific association of annexin 1 with plasma membrane-resident and internalized EGF receptors mediated through the protein core domain. FEBS Letters, 2004, 578, 95-98.	1.3	28
110	Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO Journal, 2003, 22, 1478-1487.	3.5	253
111	Membrane Composition Affects the Reversibility of Annexin A2t Binding to Solid Supported Membranes: A QCM Studyâ€. Biochemistry, 2003, 42, 3131-3141.	1.2	33
112	Atypical properties displayed by annexin A9, a novel member of the annexin family of Ca2+ and lipid binding proteins. FEBS Letters, 2003, 546, 359-364.	1.3	21
113	Ca2+-dependent Binding and Activation of Dormant Ezrin by Dimeric S100P. Molecular Biology of the Cell, 2003, 14, 2372-2384.	0.9	99
114	The Annexin 2/S100A10 Complex Controls the Distribution of Transferrin Receptor-containing Recycling Endosomes. Molecular Biology of the Cell, 2003, 14, 4896-4908.	0.9	109
115	Functional Activation of the Formyl Peptide Receptor by a New Endogenous Ligand in Human Lung A549 Cells. Journal of Immunology, 2002, 169, 1500-1504.	0.4	69
116	Kinetics and Thermodynamics of Annexin A1 Binding to Solid-Supported Membranes: A QCM Studyâ€. Biochemistry, 2002, 41, 10087-10094.	1.2	66
117	Annexins: From Structure to Function. Physiological Reviews, 2002, 82, 331-371.	13.1	1,810
118	Endothelial Rho signaling is required for monocyte transendothelial migration. FEBS Letters, 2002, 517, 261-266.	1.3	40
119	Structure and Expression of the Murine Annexin A9 Gene. Journal of Genome Science and Technology, 2002, 1, 189-197.	0.7	3
120	Cell-surface attachment of pedestal-forming enteropathogenic <i>E. coli</i> induces a clustering of raft components and a recruitment of annexin 2. Journal of Cell Science, 2002, 115, 91-98.	1.2	86
121	Cell-surface attachment of pedestal-forming enteropathogenic E. coli induces a clustering of raft components and a recruitment of annexin 2. Journal of Cell Science, 2002, 115, 91-8.	1.2	76
122	Folding energetics of ligand binding proteins II. Cooperative binding of Ca2+ to annexin I. Journal of Molecular Biology, 2001, 306, 825-835.	2.0	33
123	X-ray structure of full-length annexin 1 and implications for membrane aggregation 11 Edited by D. Rees. Journal of Molecular Biology, 2001, 306, 489-498.	2.0	130
124	Complex formation and submembranous localization of annexin 2 and S100A10 in live HepG2 cells. FEBS Letters, 2001, 500, 137-140.	1.3	48
125	Visualization of Annexin I Binding to Calcium-Induced Phosphatidylserine Domains. ChemBioChem, 2001, 2, 587-590.	1.3	30
126	Association of annexin 2 with recycling endosomes requires either calcium- or cholesterol-stabilized membrane domains. European Journal of Cell Biology, 2001, 80, 499-507.	1.6	44

#	Article	IF	Citations
127	Annexin 2 has an essential role in actin-based macropinocytic rocketing. Current Biology, 2001, 11, 1136-1141.	1.8	94
128	Annexins And Membrane Organisation In The Endocytic Pathway. Cellular and Molecular Biology Letters, 2001, 6, 204.	2.7	6
129	S100–ANNEXIN COMPLEXES: SOME INSIGHTS FROM STRUCTURAL STUDIES. Cell Biology International, 2000, 24, 799-802.	1.4	56
130	Structural basis of the Ca2+-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure, 2000, 8, 175-184.	1.6	176
131	Modes of annexin-membrane interactions analyzed by employing chimeric annexin proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1498, 174-180.	1.9	26
132	A Novel Ligand of the Formyl Peptide Receptor. Molecular Cell, 2000, 5, 831-840.	4.5	295
133	Identification of Hydrophobic Amino Acid Residues Involved in the Formation of S100P Homodimers in Vivoâ€. Biochemistry, 2000, 39, 9533-9539.	1.2	27
134	Analysis of Cd44-Containing Lipid Rafts. Journal of Cell Biology, 1999, 146, 843-854.	2.3	386
135	The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nature Structural Biology, 1999, 6, 89-95.	9.7	262
136	A comparison of the energetics of annexin I and annexin V. Journal of Molecular Biology, 1999, 288, 1013-1025.	2.0	31
137	Role of the C-Terminal Extension in the Interaction of S100A1 with GFAP, Tubulin, the S100A1- and S100B-Inhibitory Peptide, TRTK-12, and a Peptide Derived from p53, and the S100A1 Inhibitory Effect on GFAP Polymerization. Biochemical and Biophysical Research Communications, 1999, 254, 36-41.	1.0	49
138	Conserved charged residues in the leucine-rich repeat domain of the Ran GTPase activating protein are required for Ran binding and GTPase activation. Biochemical Journal, 1999, 343, 653-662.	1.7	32
139	Hydrophobic residues in the C-terminal region of S100A1 are essential for target protein binding butnot for dimerization. Cell Calcium, 1998, 24, 137-151.	1.1	53
140	Differential expression of annexins I, II and IV in human tissues: an immunohistochemical study. Histochemistry and Cell Biology, 1998, 110, 137-148.	0.8	112
141	Phospholipid vesicle binding and aggregation by four novel fish annexins are differently regulated by Ca2+. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1448, 311-319.	1.9	11
142	Disruption of Endothelial Microfilaments Selectively Reduces the Transendothelial Migration of Monocytes. Experimental Cell Research, 1998, 243, 129-141.	1.2	46
143	The Annexin II-p11 Complex Is Involved in Regulated Exocytosis in Bovine Pulmonary Artery Endothelial Cells. Journal of Biological Chemistry, 1998, 273, 19679-19684.	1.6	68
144	The Acidic C-terminal Domain of rna1p Is Required for the Binding of Ran·GTP and for RanGAP Activity. Journal of Biological Chemistry, 1997, 272, 24717-24726.	1.6	26

#	Article	IF	Citations
145	Structural analysis of junctions formed between lipid membranes and several annexins by cryo-electron microscopy 1 1Edited by M. F. Moody. Journal of Molecular Biology, 1997, 272, 42-55.	2.0	107
146	Annexin I targets S100C to early endosomes. FEBS Letters, 1997, 413, 185-190.	1.3	70
147	Annexins and membrane dynamics. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1357, 129-154.	1.9	322
148	Mapping of a regulatory important site for protein kinase C phosphorylation in the N-terminal domain of annexin II. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1313, 283-289.	1.9	61
149	The Crystal Structure and Ion Channel Activity of Human Annexin II, a Peripheral Membrane Protein. Journal of Molecular Biology, 1996, 257, 839-847.	2.0	116
150	Structural requirements for annexin I-S100C complex-formation. Biochemical Journal, 1996, 319, 123-129.	1.7	87
151	Annexin II Modulates Volume-activated Chloride Currents in Vascular Endothelial Cells. Journal of Biological Chemistry, 1996, 271, 30631-30636.	1.6	70
152	Recombinant expression and domain structure of the Rna1 protein from Schizosaccharomyces pombe. FEBS Letters, 1995, 357, 173-177.	1.3	5
153	Cytoskeletal modulation of the response to mechanical stimulation in human vascular endothelial cells. Pflugers Archiv European Journal of Physiology, 1994, 428, 569-576.	1.3	48
154	The expression of different annexins in the fish embryo is developmentally regulated. FEBS Letters, 1994, 352, 227-230.	1.3	13
155	Transduction of Ca2+ signals upon fertilization of eggs; identification of an S-100 protein as a major Ca2+-binding protein. Mechanisms of Development, 1993, 42, 151-158.	1.7	10
156	Cloning and characterization of the human gene encoding p11: structural similarity to other members of the S-100 gene family. Gene, 1992, 113, 269-274.	1.0	26
157	S100P, a novel Ca2+ -binding protein from human placenta. cDNA cloning, recombinant protein expression and Ca2+ binding properties. FEBS Journal, 1992, 207, 541-547.	0.2	146
158	Mapping of three unique Ca2+-binding sites in human annexin II. FEBS Journal, 1992, 207, 923-930.	0.2	52
159	Primary structure and expression of the Xenopus laevis gene encoding annexin II. Gene, 1991, 104, 259-264.	1.0	19
160	Characterization of a discontinuous epitope on annexin II by site-directed mutagenesis. FEBS Letters, 1991, 285, 59-62.	1.3	12
161	Characterization of the cell-cycle-regulated protein calcyclin from Ehrlich ascites tumor cells. Identification of two binding proteins obtained by Ca2+-dependent affinity chromatography. FEBS Journal, 1991, 195, 795-800.	0.2	51
162	Tyrosine kinase substrate annexin II (p36) $\hat{a}\in$ " biochemical characterization and conservation among species. Biochemical Society Transactions, 1990, 18, 1106-1108.	1.6	9

#	Article	IF	CITATIONS
163	Consensus peptide antibodies reveal a widespread occurrence of Ca2+ /lipid-binding proteins of the annexin family. FEBS Letters, 1989, 258, 259-262.	1.3	26