Gerrit Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1057028/publications.pdf

Version: 2024-02-01

57758 79698 6,620 153 44 73 citations h-index g-index papers 156 156 156 3910 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An experimentally validated model for quiescent multiphase primary and secondary crystallization phenomena in PP with low content of ethylene comonomer. Polymer, 2022, 253, 124901.	3.8	4
2	A numerical study of extensional flowâ€induced crystallization in filament stretching rheometry. Polymer Crystallization, 2021, 4, e10154.	0.8	3
3	Modeling Crystallization Kinetics and Resulting Properties of Polyamide 6. Macromolecules, 2021, 54, 1894-1904.	4.8	13
4	Anomalous Terminal Shear Viscosity Behavior of Polycarbonate Nanocomposites Containing Grafted Nanosilica Particles. Nanomaterials, 2021, 11, 1839.	4.1	1
5	Towards a universal shear correction factor in filament stretching rheometry. Rheologica Acta, 2021, 60, 691-709.	2.4	3
6	Towards the Development of a Strategy to Characterize and Model the Rheological Behavior of Filled, Uncured Rubber Compounds. Polymers, 2021, 13, 4068.	4.5	3
7	Numerical Study of the Effect of Thixotropy on Extrudate Swell. Polymers, 2021, 13, 4383.	4.5	7
8	Effect of shear rate and pressure on the crystallization of PP nanocomposites and PP/PET polymer blend nanocomposites. Polymer, 2020, 186, 121950.	3.8	16
9	Structure–mechanical property relationships in acrylate networks. Journal of Applied Polymer Science, 2020, 137, 48498.	2.6	4
10	Plasticityâ€controlled failure of sintered and molded polyamide 12: Influence of temperature and water absorption. Journal of Applied Polymer Science, 2020, 137, 48525.	2.6	11
11	A filament stretching rheometer for <i>in situ</i> X-ray experiments: Combining rheology and crystalline morphology characterization. Review of Scientific Instruments, 2020, 91, 073903.	1.3	8
12	In Situ WAXD and SAXS during Tensile Deformation Of Moulded and Sintered Polyamide 12. Polymers, 2019, 11, 1001.	4.5	5
13	Modelling flow induced crystallization of IPP: Multiple crystal phases and morphologies. Polymer, 2019, 182, 121806.	3.8	20
14	Influence of post-condensation on the crystallization kinetics of PA12: From virgin to reused powder. Polymer, 2019, 175, 161-170.	3.8	36
15	Effect of Thermal History and Shear on the Viscoelastic Response of <i>i</i> PP Containing an Oxalamide-Based Organic Compound. Macromolecules, 2019, 52, 2789-2802.	4.8	12
16	Prediction of plasticityâ€controlled failure in polyamide 6: Influence of temperature and relative humidity. Journal of Applied Polymer Science, 2018, 135, 45942.	2.6	35
17	Quantification of isothermal crystallization of polyamide 12: Modelling of crystallization kinetics and phase composition. Polymer, 2018, 155, 187-198.	3.8	41
18	Structure-Properties Relations for Polyamide 6, Part 2: Influence of Processing Conditions during Injection Moulding on Deformation and Failure Kinetics. Polymers, 2018, 10, 779.	4.5	9

#	Article	IF	Citations
19	Structureâ€"Properties Relations for Polyamide 6, Part 1: Influence of the Thermal History during Compression Moulding on Deformation and Failure Kinetics. Polymers, 2018, 10, 710.	4.5	25
20	Effect of Self-Assembly of Oxalamide Based Organic Compounds on Melt Behavior, Nucleation, and Crystallization of Isotactic Polypropylene. Macromolecules, 2018, 51, 4882-4895.	4.8	16
21	Concomitant Crystallization in Propylene/Ethylene Random Copolymer with Strong Flow at Elevated Temperatures. Industrial & Description (Section 2018) 18, 57, 6870-6877.	3.7	8
22	Cross-Nucleation between Polymorphs: Quantitative Modeling of Kinetics and Morphology. Crystal Growth and Design, 2018, 18, 3921-3926.	3.0	12
23	Deformation and failure kinetics of iPP polymorphs. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 729-747.	2.1	27
24	Full Characterization of Multiphase, Multimorphological Kinetics in Flow-Induced Crystallization of IPP at Elevated Pressure. Macromolecules, 2017, 50, 3868-3882.	4.8	32
25	Buffers Strongly Modulate Fibrin Self-Assembly into Fibrous Networks. Langmuir, 2017, 33, 6342-6352.	3.5	45
26	Glass transition temperature versus structure of polyamide 6: A flash-DSC study. Thermochimica Acta, 2017, 657, 110-122.	2.7	79
27	Anomalous Temperature Dependence of Isotactic Polypropylene \hat{l}_{\pm} -on- \hat{l}^{2} Cross-Nucleation Kinetics. Crystal Growth and Design, 2017, 17, 4936-4943.	3.0	22
28	Application of a multi-phase multi-morphology crystallization model to isotactic polypropylenes with different molecular weight distributions. European Polymer Journal, 2017, 97, 397-408.	5.4	6
29	Quiescent crystallization of poly(lactic acid) studied by optical microscopy and lightâ€scattering techniques. Journal of Applied Polymer Science, 2017, 134, .	2.6	9
30	The advantage of linear viscoelastic material behavior in passive damper design-with application in broad-banded resonance dampers for industrial high-precision motion stages. Journal of Sound and Vibration, 2017, 386, 242-250.	3.9	9
31	Deformation-Induced Phase Transitions in iPP Polymorphs. Polymers, 2017, 9, 547.	4.5	22
32	Molecular Aspects of the Formation of Shish-Kebab in Isotactic Polypropylene. Macromolecules, 2016, 49, 3799-3809.	4.8	54
33	Modeling Flow-Induced Crystallization. Advances in Polymer Science, 2016, , 243-294.	0.8	6
34	Physical aging in polycarbonate nanocomposites containing grafted nanosilica particles: A comparison between enthalpy and yield stress evolution. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2069-2081.	2.1	17
35	Non-isothermal Crystallization of Semi-Crystalline Polymers: The Influence of Cooling Rate and Pressure. Advances in Polymer Science, 2016, , 207-242.	0.8	3
36	Nucleation induced by "Short-Term Pressurization―of an undercooled isotactic polypropylene melt. European Polymer Journal, 2016, 85, 553-563.	5.4	4

#	Article	lF	CITATIONS
37	A constitutive model for developing blood clots with various compositions and their nonlinear viscoelastic behavior. Biomechanics and Modeling in Mechanobiology, 2016, 15, 279-291.	2.8	39
38	Dissolution and Re-emergence of Flow-Induced Shish in Polyethylene with a Broad Molecular Weight Distribution. Macromolecules, 2016, 49, 2724-2730.	4.8	43
39	Flow-induced crystallization of isotactic polypropylene: Modeling formation of multiple crystal phases and morphologies. Polymer, 2016, 89, 69-80.	3.8	42
40	Structure evolution during film blowing: An experimental study using in-situ small angle X-ray scattering. European Polymer Journal, 2016, 74, 190-208.	5.4	34
41	The prediction of mechanical performance of isotactic polypropylene on the basis of processing conditions. Polymer, 2016, 83, 116-128.	3.8	34
42	Real-Time Fast Structuring of Polymers Using Synchrotron WAXD/SAXS Techniques. Advances in Polymer Science, 2015, , 127-165.	0.8	11
43	Modeling flow-induced crystallization in isotactic polypropylene at high shear rates. Journal of Rheology, 2015, 59, 613-642.	2.6	35
44	Flowâ€induced solidification of highâ€impact polypropylene copolymer compositions: Morphological and mechanical effects. Journal of Applied Polymer Science, 2015, 132, .	2.6	7
45	Kinetics of the deformation induced memory effect in polyamide-6. European Polymer Journal, 2015, 72, 296-308.	5.4	5
46	The effect of pressure pulses on isotactic polypropylene crystallization. European Polymer Journal, 2015, 71, 185-195.	5.4	15
47	Linear viscoelastic fluid characterization of ultra-high-viscosity fluids for high-frequency damper design. Rheologica Acta, 2015, 54, 667-677.	2.4	7
48	Unusual Melting Behavior in Flow Induced Crystallization of LLDPE: Effect of Pressure. Macromolecules, 2015, 48, 2551-2560.	4.8	20
49	Electrospinning poly($\hat{l}\mu$ -caprolactone) under controlled environmental conditions: Influence on fiber morphology and orientation. Polymer, 2015, 63, 189-195.	3.8	65
50	Characterization of the primary and secondary crystallization kinetics of a linear low-density polyethylene in quiescent- and flow-conditions. Polymer, 2015, 76, 254-270.	3.8	24
51	Flow-induced crystallization studied in the RheoDSC device: Quantifying the importance of edge effects. Rheologica Acta, 2015, 54, 1-8.	2.4	12
52	Selfâ∈Regulation in Flowâ∈Induced Structure Formation of Polypropylene. Macromolecular Rapid Communications, 2015, 36, 385-390.	3.9	24
53	Structure Development of Low-Density Polyethylenes During Film Blowing: A Real-Time Wide-Angle X-ray Diffraction Study. Macromolecular Materials and Engineering, 2014, 299, 1494-1512.	3.6	32
54	A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates. Rheologica Acta, 2014, 53, 75-83.	2.4	16

#	Article	IF	Citations
55	X-ray irradiation induced reduction and nanoclustering of lead in borosilicate glass. CrystEngComm, 2014, 16, 9331-9339.	2.6	23
56	A Constitutive Model for a Maturing Fibrin Network. Biophysical Journal, 2014, 107, 504-513.	0.5	21
57	Flow induced crystallization in isotactic polypropylene during and after flow. Polymer, 2014, 55, 6140-6151.	3.8	45
58	Multimorphological Crystallization of Shish-Kebab Structures in Isotactic Polypropylene: Quantitative Modeling of Parent–Daughter Crystallization Kinetics. Macromolecules, 2014, 47, 5152-5162.	4.8	38
59	Mechanical Performance of Injectionâ€Molded Poly(propylene): Characterization and Modeling. Macromolecular Materials and Engineering, 2013, 298, 348-358.	3.6	26
60	Flow-enhanced nucleation of poly(1-butene): Model application to short-term and continuous shear and extensional flow. Journal of Rheology, 2013, 57, 1633-1653.	2.6	26
61	Short-Term Flow Induced Crystallization in Isotactic Polypropylene: How Short Is Short?. Macromolecules, 2013, 46, 9249-9258.	4.8	64
62	Flowâ€enhanced Crystallization Kinetics of i <scp>PP</scp> during Cooling at Elevated Pressure: Characterization, Validation, and Development. Macromolecular Theory and Simulations, 2013, 22, 309-318.	1.4	30
63	High-Stress Shear-Induced Crystallization in Isotactic Polypropylene and Propylene/Ethylene Random Copolymers. Macromolecules, 2013, 46, 2671-2680.	4.8	36
64	Polymer crystallization studies under processing-relevant conditions at the SAXS/WAXS DUBBLE beamline at the ESRF. Journal of Applied Crystallography, 2013, 46, 1681-1689.	4.5	111
65	Rateâ€, temperatureâ€, and structureâ€dependent yield kinetics of isotactic polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1438-1451.	2.1	37
66	Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of cooling rate and pressure. Polymer, 2012, 53, 4758-4769.	3.8	118
67	Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of shear and pressure. Polymer, 2012, 53, 5896-5908.	3.8	66
68	Pressure Quench of Flow-Induced Crystallization Precursors. Macromolecules, 2012, 45, 4216-4224.	4.8	56
69	Oriented Gamma Phase in Isotactic Polypropylene Homopolymer. ACS Macro Letters, 2012, 1, 618-622.	4.8	54
70	Flowâ€Induced Morphology of iPP Solidified in a Shear Device. Macromolecular Materials and Engineering, 2012, 297, 60-67.	3.6	25
71	Suspension-like hardening behavior of HDPE and time-hardening superposition. Rheologica Acta, 2012, 51, 97-109.	2.4	25
72	Self-Nucleation of Polymers with Flow: The Case of Bimodal Polyethylene. Macromolecules, 2011, 44, 2926-2933.	4.8	81

#	Article	IF	CITATIONS
73	A stretch-based model for flow-enhanced nucleation of polymer melts. Journal of Rheology, 2011, 55, 401-433.	2.6	54
74	Using rheometry to determine nucleation density in a colored system containing a nucleating agent. Rheologica Acta, 2011, 50, 909-915.	2.4	21
75	A Model for Flowâ€enhanced Nucleation Based on Fibrillar Dormant Precursors. Macromolecular Theory and Simulations, 2011, 20, 93-109.	1.4	24
76	Dynamics of fibrillar precursors of shishes as a function of stress. IOP Conference Series: Materials Science and Engineering, 2010, 14, 012005.	0.6	13
77	Residual stresses in gas-assisted injection molding. Rheologica Acta, 2010, 49, 23-44.	2.4	5
78	Does subcutaneous adipose tissue behave as an (anti-)thixotropic material?. Journal of Biomechanics, 2010, 43, 1153-1159.	2.1	37
79	Numerical simulation of the fountain flow instability in injection molding. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 631-640.	2.4	30
80	Anisotropy parameter restrictions for the eXtended Pom-Pom model. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 1047-1054.	2.4	15
81	Effects of partial miscibility on drop-wall and drop-drop interactions. Journal of Rheology, 2010, 54, 159-183.	2.6	14
82	A Novel Dilatometer for PVT Measurements of Polymers at High Cooling $\hat{a} \in \text{``and Shear Rates.'}$ International Polymer Processing, 2009, 24, 114-121.	0.5	28
83	A Design to Study Flow Induced Crystallization in a Multipass Rheometer. International Polymer Processing, 2009, 24, 185-197.	0.5	28
84	Dilatometry: A Tool to Measure the Influence of Cooling Rate and Pressure on the Phase Behavior of Nucleated Polypropylene. Macromolecular Materials and Engineering, 2009, 294, 231-243.	3.6	10
85	Model Development and Validation of Crystallization Behavior in Injection Molding Prototype Flows. Macromolecular Theory and Simulations, 2009, 18, 469-494.	1.4	74
86	Study of morphological hysteresis in partially immiscible polymers. Rheologica Acta, 2009, 48, 343-358.	2.4	3
87	Flow-induced crystallization regimes and rheology of isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2009, 98, 655-666.	3.6	47
88	Flow-induced crystallization of propylene/ethylene random copolymers. Journal of Thermal Analysis and Calorimetry, 2009, 98, 693-705.	3.6	44
89	Volumetric rheology of polymers. Journal of Thermal Analysis and Calorimetry, 2009, 98, 683-691.	3.6	14
90	Structure–property relations in molded, nucleated isotactic polypropylene. Polymer, 2009, 50, 2304-2319.	3.8	198

#	Article	IF	Citations
91	Characteristics of Bimodal Polyethylene Prepared via Coâ€lmmobilization of Chromium and Iron Catalysts on an MgCl ₂ â€Based Support. Macromolecular Reaction Engineering, 2009, 3, 448-454.	1.5	37
92	Crystallization and Precursors during Fast Short-Term Shear. Macromolecules, 2009, 42, 2088-2092.	4.8	104
93	Saturation of Pointlike Nuclei and the Transition to Oriented Structures in Flow-Induced Crystallization of Isotactic Polypropylene. Macromolecules, 2009, 42, 5728-5740.	4.8	163
94	Suspension-based rheological modeling of crystallizing polymer melts. Rheologica Acta, 2008, 47, 643-665.	2.4	34
95	Transient interfacial tension of partially miscible polymers. Journal of Colloid and Interface Science, 2008, 325, 130-140.	9.4	7
96	Transient interfacial tension and morphology evolution in partially miscible polymer blends. Journal of Colloid and Interface Science, 2008, 328, 48-57.	9.4	9
97	Numerical simulation of planar elongational flow of concentrated rigid particle suspensions in a viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics, 2008, 150, 65-79.	2.4	29
98	Continuum model for the simulation of fiber spinning, with quiescent and flow-induced crystallization. Journal of Non-Newtonian Fluid Mechanics, 2008, 150, 177-195.	2.4	43
99	Strong decrease in viscosity of nanoparticle-filled polymer melts through selective adsorption. Soft Matter, 2008, 4, 1848.	2.7	158
100	Thermoreversible DMDBS Phase Separation in iPP: The Effects of Flow on the Morphology. Macromolecules, 2008, 41, 5350-5355.	4.8	45
101	Confined Flow of Polymer Blends. Langmuir, 2008, 24, 4494-4505.	3.5	19
102	Flow Induced Crystallization in Isotactic Polypropyleneâ^'1,3:2,4-Bis(3,4-dimethylbenzylidene)sorbitol Blends:  Implications on Morphology of Shear and Phase Separation. Macromolecules, 2008, 41, 399-408.	4.8	94
103	Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology, 2008, 45, 677-688.	0.4	174
104	Rheological Modeling of Flow-Induced Crystallization in Polymer Melts and Limitations on Classification of Experiments. AIP Conference Proceedings, 2008, , .	0.4	4
105	Crystallization and Dissolution of Flow-Induced Precursors. Physical Review Letters, 2008, 100, 048302.	7.8	181
106	Crystallinity and Linear Rheological Properties of Polymers. International Polymer Processing, 2007, 22, 303-310.	0.5	46
107	A numerical method for simulating concentrated rigid particle suspensions in an elongational flow using a fixed grid. Journal of Computational Physics, 2007, 226, 688-711.	3.8	20
108	Modeling of Flow-Induced Crystallization of Particle-Filled Polymers. Macromolecules, 2006, 39, 8389-8398.	4.8	61

#	Article	IF	Citations
109	Classifying the Combined Influence of Shear Rate, Temperature, and Pressure on Crystalline Morphology and Specific Volume of Isotactic (Poly)propylene. Macromolecules, 2006, 39, 9278-9284.	4.8	20
110	Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene. Macromolecules, 2006, 39, 1805-1814.	4.8	55
111	Processing-induced properties in glassy polymers: Application of structural relaxation to yield stress development. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1212-1225.	2.1	30
112	Film drainage and interfacial instabilities in polymeric systems with diffuse interfaces. Journal of Colloid and Interface Science, 2006, 296, 86-94.	9.4	25
113	A Dilatometer to Measure the Influence of Cooling Rate and Melt Shearing on Specific Volume. International Polymer Processing, 2005, 20, 111-120.	0.5	32
114	Improved experimental characterization of crystallization kinetics. European Polymer Journal, 2005, 41, 2297-2302.	5.4	17
115	The Influence of Cooling Rate on the Specific Volume of Isotactic Poly(propylene) at Elevated Pressures. Macromolecular Materials and Engineering, 2005, 290, 443-455.	3.6	36
116	Processing-induced Properties in Glassy Polymers. International Polymer Processing, 2005, 20, 170-177.	0.5	35
117	Transient interfacial tension and dilatational rheology of diffuse polymer-polymer interfaces. Journal of Chemical Physics, 2005, 122, 104901.	3.0	11
118	Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheologica Acta, 2004, 44, 119-134.	2.4	187
119	Numerical simulations of the planar contraction flow for a polyethylene melt using the XPP model. Journal of Non-Newtonian Fluid Mechanics, 2004, 117, 73-84.	2.4	64
120	Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt. Journal of Rheology, 2004, 48, 663-678.	2.6	129
121	Stability analysis of injection molding flows. Journal of Rheology, 2004, 48, 765-785.	2.6	62
122	Structure, Deformation, and Failure of Flow-Oriented Semicrystalline Polymers. Macromolecules, 2004, 37, 8618-8633.	4.8	234
123	Orientation and Crystallinity Measurements in Injection Moulded Products. Polymer Bulletin, 2003, 50, 405-411.	3.3	9
124	Film drainage between two captive drops: PEO–water in silicon oil. Journal of Colloid and Interface Science, 2003, 266, 195-201.	9.4	29
125	Time dependent finite element analysis of the linear stability of viscoelastic flows with interfaces. Journal of Non-Newtonian Fluid Mechanics, 2003, 116, 33-54.	2.4	18
126	Stress Induced Crystallization in Elongational Flow. International Polymer Processing, 2003, 18, 53-66.	0.5	47

#	Article	IF	Citations
127	A Computational Model for Processing of Semicrystalline Polymers: The Effects of Flow-Induced Crystallization. Lecture Notes in Physics, 2003, , 312-324.	0.7	6
128	Numerical analysis of flow mark surface defects in injection molding flow. Journal of Rheology, 2002, 46, 651-669.	2.6	52
129	The influence of flow-induced crystallization on the impact toughness of highâ€density polyethylene. Macromolecular Symposia, 2002, 185, 89-102.	0.7	33
130	A recoverable strain-based model for flowâ€induced crystallization. Macromolecular Symposia, 2002, 185, 277-292.	0.7	32
131	Birefringence measurements on polymer melts in an axisymmetric flow cell. Rheologica Acta, 2002, 41, 114-133.	2.4	12
132	Stability analysis of constitutive equations for polymer melts in viscometric flows. Journal of Non-Newtonian Fluid Mechanics, 2002, 103, 221-250.	2.4	48
133	Stability analysis of polymer shear flows using the eXtended Pom–Pom constitutive equations. Journal of Non-Newtonian Fluid Mechanics, 2002, 108, 187-208.	2.4	79
134	Viscoelastic analysis of complex polymer melt flows using the eXtended Pom–Pom model. Journal of Non-Newtonian Fluid Mechanics, 2002, 108, 301-326.	2.4	94
135	A global, multi-scale simulation of laminar fluid mixing: the extended mapping method. International Journal of Multiphase Flow, 2002, 28, 497-523.	3.4	29
136	Constitutive modeling of dispersive mixtures. Journal of Rheology, 2001, 45, 659-689.	2.6	39
137	Differential constitutive equations for polymer melts: The extended Pom–Pom model. Journal of Rheology, 2001, 45, 823-843.	2.6	256
138	A 3-D finite element model for gas-assisted injection molding: Simulations and experiments. Polymer Engineering and Science, 2001, 41, 449-465.	3.1	44
139	Influence of cooling rate on pVT-data of semicrystalline polymers. Journal of Applied Polymer Science, 2001, 82, 1170-1186.	2.6	72
140	Development and Validation of a Recoverable Strain-Based Model for Flow-Induced Crystallization of Polymers. Macromolecular Theory and Simulations, 2001, 10, 447-460.	1.4	174
141	An adaptive front tracking technique for three-dimensional transient flows. International Journal for Numerical Methods in Fluids, 2000, 32, 201-217.	1.6	51
142	Chaotic fluid mixing in non-quasi-static time-periodic cavity flows. International Journal of Heat and Fluid Flow, 2000, 21, 176-185.	2.4	35
143	Mixing of non-Newtonian fluids in time-periodic cavity flows. Journal of Non-Newtonian Fluid Mechanics, 2000, 93, 265-286.	2.4	40
144	3D Viscoelastic analysis of a polymer solution in a complex flow. Computer Methods in Applied Mechanics and Engineering, 1999, 180, 413-430.	6.6	43

GERRIT PETERS

#	Article	IF	CITATIONS
145	On the performance of enhanced constitutive models for polymer melts in a cross-slot flow. Journal of Non-Newtonian Fluid Mechanics, 1999, 82, 387-427.	2.4	62
146	The effect of surfactant on the stability of a fluid filament embedded in a viscous fluid. Journal of Fluid Mechanics, 1999, 382, 331-349.	3.4	59
147	A 3D numerical/experimental study on a stagnation flow of a polyisobutylene solution. Journal of Non-Newtonian Fluid Mechanics, 1998, 79, 529-561.	2.4	46
148	The Applicability of the Time/Temperature Superposition Principle to Brain Tissue. Biorheology, 1997, 34, 127-138.	0.4	43
149	Modelling of non-isothermal viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics, 1997, 68, 205-224.	2.4	98
150	Viscoelastic flow past a confined cylinder of a low density polyethylene melt. Journal of Non-Newtonian Fluid Mechanics, 1997, 68, 173-203.	2.4	122
151	Viscoelastic flow past a confined cylinder of a polyisobutylene solution. Journal of Rheology, 1995, 39, 1243-1277.	2.6	62
152	An experimental and numerical investigation of a viscoelastic flow around a cylinder. Journal of Rheology, 1994, 38, 351-376.	2.6	36
153	Multilayer Injection Molding. International Polymer Processing, 1991, 6, 42-50.	0.5	21