Navdeep S Chandel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1056975/publications.pdf

Version: 2024-02-01

252 papers 56,099 citations

1994 101 h-index 227 g-index

289 all docs

289 docs citations

times ranked

289

70166 citing authors

#	Article	IF	CITATIONS
1	Scinderin promotes fusion of electron transport chain dysfunctional muscle stem cells with myofibers. Nature Aging, 2022, 2, 155-169.	11.6	15
2	BMAL1 drives muscle repair through control of hypoxic NAD ⁺ regeneration in satellite cells. Genes and Development, 2022, 36, 149-166.	5.9	13
3	Genes Involved in Maintaining Mitochondrial Membrane Potential Upon Electron Transport Chain Disruption. Frontiers in Cell and Developmental Biology, 2022, 10, 781558.	3.7	16
4	2-Year-Old and 3-Year-Old Italian ALS Patients with Novel ALS2 Mutations: Identification of Key Metabolites in Their Serum and Plasma. Metabolites, 2022, 12, 174.	2.9	3
5	Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 2022, 23, 499-515.	37.0	469
6	Mitochondrial dysregulation occurs early in ALS motor cortex with TDP-43 pathology and suggests maintaining NAD+ balance as a therapeutic strategy. Scientific Reports, 2022, 12, 4287.	3.3	17
7	Reduced expression of mitochondrial complex I subunit Ndufs2 does not impact healthspan in mice. Scientific Reports, 2022, 12, 5196.	3.3	10
8	Disruption of mitochondrial complex III in cap mesenchyme but not in ureteric progenitors results in defective nephrogenesis associated with amino acid deficiency. Kidney International, 2022, , .	5.2	0
9	Hexokinase 1 cellular localization regulates the metabolic fate of glucose. Molecular Cell, 2022, 82, 1261-1277.e9.	9.7	42
10	Intermittent prednisone treatment in mice promotes exercise tolerance in obesity through adiponectin. Journal of Experimental Medicine, 2022, 219, .	8.5	7
11	Neurons undergo pathogenic metabolic reprogramming in models of familial ALS. Molecular Metabolism, 2022, 60, 101468.	6.5	6
12	Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nature Immunology, 2022, 23, 692-704.	14.5	107
13	ISL2 is a putative tumor suppressor whose epigenetic silencing reprograms the metabolism of pancreatic cancer. Developmental Cell, 2022, 57, 1331-1346.e9.	7.0	9
14	Kidney epithelial targeted mitochondrial transcription factor A deficiency results inÂprogressive mitochondrial depletion associatedÂwith severe cystic disease. Kidney International, 2021, 99, 657-670.	5.2	16
15	Carbohydrate Metabolism. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040568.	5.5	53
16	Treating mitochondrial diseases with antibiotics. Nature Metabolism, 2021, 3, 5-6.	11.9	2
17	Targeting Bacteria within Us to Diminish Infection and Autoimmunity. Immunity, 2021, 54, 1-3.	14.3	7
18	Signaling and Metabolism. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040600.	5.5	12

#	Article	IF	CITATIONS
19	The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. Journal of Clinical Investigation, 2021, 131, .	8.2	86
20	Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. Science Advances, 2021, 7, .	10.3	45
21	LKB1/ <i>STK11</i> Is a Tumor Suppressor in the Progression of Myeloproliferative Neoplasms. Cancer Discovery, 2021, 11, 1398-1410.	9.4	29
22	Mitochondrial metabolism is essential for invariant natural killer T cell development and function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	20
23	Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell, 2021, 28, 394-408.	11.1	151
24	Mitochondria. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040543.	5 . 5	32
25	SGK1 signaling promotes glucose metabolism and survival in extracellular matrix detached cells. Cell Reports, 2021, 34, 108821.	6.4	32
26	Mitochondrial Metabolism Regulation of T Cell–Mediated Immunity. Annual Review of Immunology, 2021, 39, 395-416.	21.8	34
27	Mitochondrial respiration controls the Prox1-Vegfr3 feedback loop during lymphatic endothelial cell fate specification and maintenance. Science Advances, 2021, 7, .	10.3	16
28	Amino Acid Metabolism. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040584.	5 . 5	25
29	Glycolysis. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040535.	5.5	84
30	NADPHâ€"The Forgotten Reducing Equivalent. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040550.	5 . 5	23
31	Nucleotide Metabolism. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040592.	5.5	18
32	Cancer metabolism: looking forward. Nature Reviews Cancer, 2021, 21, 669-680.	28.4	676
33	Lessons from Cancer Metabolism for Pulmonary Arterial Hypertension and Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 134-145.	2.9	9
34	Basics of Metabolic Reactions. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040527.	5 . 5	5
35	Hypoxic preconditioning protects against ischemic kidney injury through the IDO1/kynurenine pathway. Cell Reports, 2021, 36, 109547.	6.4	25
36	Metabolic decisions in development and diseaseâ€"a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 55-73.	3.8	6

#	Article	IF	CITATIONS
37	Lipid Metabolism. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040576.	5.5	25
38	Metabolism of Proliferating Cells. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040618.	5.5	13
39	The Gro3p factor: Restoring NAD+/NADH homeostasis to ameliorate mitochondrial disease. Cell Metabolism, 2021, 33, 1905-1907.	16.2	2
40	Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science, 2021, 374, 1227-1237.	12.6	96
41	NADH inhibition of SIRT1 links energy state to transcription during time-restricted feeding. Nature Metabolism, 2021, 3, 1621-1632.	11.9	26
42	Reactive oxygen species and cancer. , 2020, , 619-637.		5
43	FIHâ€1 engages novel binding partners to positively influence epithelial proliferation via p63. FASEB Journal, 2020, 34, 525-539.	0.5	10
44	Mitochondrial TCA cycle metabolites control physiology and disease. Nature Communications, 2020, 11, 102.	12.8	1,213
45	Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metabolism, 2020, 32, 341-352.	16.2	323
46	Epithelial cell–specific loss of function of <i>Miz1</i> causes a spontaneous COPD-like phenotype and up-regulates <i>Ace2</i> expression in mice. Science Advances, 2020, 6, eabb7238.	10.3	16
47	Metabolic determinants of cellular fitness dependent on mitochondrial reactive oxygen species. Science Advances, 2020, 6, .	10.3	28
48	Mitochondrial Dysfunction in Fragile-X Syndrome: Plugging the Leak May Save the Ship. Molecular Cell, 2020, 80, 381-383.	9.7	4
49	NAD+ Regeneration Rescues Lifespan, but Not Ataxia, in a Mouse Model of Brain Mitochondrial Complex I Dysfunction. Cell Metabolism, 2020, 32, 301-308.e6.	16.2	72
50	Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature Reviews Molecular Cell Biology, 2020, 21, 268-283.	37.0	595
51	Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature, 2020, 585, 288-292.	27.8	205
52	Elevated CO2 Levels Delay Skeletal Muscle Repair by Increasing Fatty Acid Oxidation. Frontiers in Physiology, 2020, 11, 630910.	2.8	11
53	We need to talk about the Warburg effect. Nature Metabolism, 2020, 2, 127-129.	11.9	476
54	Residual endotoxin induces primary graft dysfunction through ischemia-reperfusion-primed alveolar macrophages. Journal of Clinical Investigation, 2020, 130, 4456-4469.	8.2	13

#	Article	IF	CITATIONS
55	β-Catenin/Tcf7l2–dependent transcriptional regulation of GLUT1 gene expression by Zic family proteins in colon cancer. Science Advances, 2019, 5, eaax0698.	10.3	28
56	Glucose Metabolism Linked to Antiviral Responses. Cell, 2019, 178, 10-11.	28.9	9
57	Requirement of Mitochondrial Transcription Factor A in Tissue-Resident Regulatory T Cell Maintenance and Function. Cell Reports, 2019, 28, 159-171.e4.	6.4	51
58	Essentiality of fatty acid synthase in the 2D to anchorage-independent growth transition in transforming cells. Nature Communications, 2019, 10, 5011.	12.8	43
59	Mitochondrial stress causes neuronal dysfunction via an ATF4-dependent increase in L-2-hydroxyglutarate. Journal of Cell Biology, 2019, 218, 4007-4016.	5.2	38
60	Suppressing Mitochondrial Respiration Is Critical for Hypoxia Tolerance in the Fetal Growth Plate. Developmental Cell, 2019, 49, 748-763.e7.	7.0	41
61	NAD-biosynthetic pathways regulate innate immunity. Nature Immunology, 2019, 20, 380-382.	14.5	20
62	HIF- $1\hat{l}\pm$ Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma. Cell Reports, 2019, 27, 226-237.e4.	6.4	197
63	Serine Metabolism Supports Macrophage IL-1Î ² Production. Cell Metabolism, 2019, 29, 1003-1011.e4.	16.2	192
64	Probing mitochondrial metabolism in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20-22.	7.1	14
65	Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain to Polarize Macrophages for Tissue Repair. Cell Metabolism, 2019, 29, 443-456.e5.	16.2	233
66	IDH3α regulates one-carbon metabolism in glioblastoma. Science Advances, 2019, 5, eaat0456.	10.3	59
67	Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nature Metabolism, 2019, 1, 158-171.	11.9	141
68	Hepatic HKDC1 Expression Contributes to Liver Metabolism. Endocrinology, 2019, 160, 313-330.	2.8	40
69	The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer. Cell Death and Differentiation, 2019, 26, 1955-1969.	11.2	60
70	Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature, 2019, 565, 495-499.	27.8	323
71	There Is No Smoke without Mitochondria. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 489-491.	2.9	5
72	Metformin Targets Mitochondrial Electron Transport to Reduce Air-Pollution-Induced Thrombosis. Cell Metabolism, 2019, 29, 335-347.e5.	16.2	75

#	Article	lF	Citations
73	Immunometabolism of pro-repair cells. Journal of Clinical Investigation, 2019, 129, 2597-2607.	8.2	30
74	Mitochondrial acetyl-CoA reversibly regulates locus-specific histone acetylation and gene expression. Life Science Alliance, 2019, 2, e201800228.	2.8	35
75	Acetyl-CoA-directed gene transcription in cancer cells. Genes and Development, 2018, 32, 463-465.	5.9	23
76	Mitochondrial Complex I Inhibitors Expose a Vulnerability for Selective Killing of Pten-Null Cells. Cell Reports, 2018, 23, 58-67.	6.4	73
77	E2F1 Suppresses Oxidative Metabolism and Endothelial Differentiation of Bone Marrow Progenitor Cells. Circulation Research, 2018, 122, 701-711.	4.5	23
78	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
79	Regulation of redox balance in cancer and T cells. Journal of Biological Chemistry, 2018, 293, 7499-7507.	3.4	127
80	Mitochondria: back to the future. Nature Reviews Molecular Cell Biology, 2018, 19, 76-76.	37.0	21
81	To Claim Growth Turf, mTOR Says SOD Off. Molecular Cell, 2018, 70, 383-384.	9.7	8
82	Mitochondria-ER Pas de Deux Controls Memory T Cell Function. Immunity, 2018, 48, 479-481.	14.3	1
83	JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension. Journal of Biological Chemistry, 2018, 293, 271-284.	3.4	14
84	Hexokinase 2 is dispensable for T cell-dependent immunity. Cancer & Metabolism, 2018, 6, 10.	5.0	33
85	ER-associated ubiquitin ligase HRD1 programs liver metabolism by targeting multiple metabolic enzymes. Nature Communications, 2018, 9, 3659.	12.8	42
86	ROS Promotes Cancer Cell Survival through Calcium Signaling. Cancer Cell, 2018, 33, 949-951.	16.8	98
87	Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation. PLoS Biology, 2018, 16, e2005707.	5 . 6	77
88	Metabolism and Skeletal Muscle Homeostasis in Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 28-34.	2.9	18
89	The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1492-1500.	3.6	55
90	Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated proteinÂtranslation. Nature Cell Biology, 2017, 19, 626-638.	10.3	126

#	Article	IF	Citations
91	The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nature Cell Biology, 2017, 19, 614-625.	10.3	244
92	Beneficial Effects of Myo-Inositol Oxygenase Deficiency in Cisplatin-Induced AKI. Journal of the American Society of Nephrology: JASN, 2017, 28, 1421-1436.	6.1	48
93	Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation. Cell Reports, 2017, 19, 1858-1873.	6.4	164
94	Mitochondria control acute and chronic responses to hypoxia. Experimental Cell Research, 2017, 356, 217-222.	2.6	69
95	Reactive oxygen species as signaling molecules in the development of lung fibrosis. Translational Research, 2017, 190, 61-68.	5.0	67
96	A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nature Chemical Biology, 2017, 13, 1274-1279.	8.0	138
97	Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Science Signaling, 2017, 10, .	3.6	112
98	Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. Journal of Experimental Medicine, 2017, 214, 2387-2404.	8.5	755
99	Waste Not, Want Not: Lactate Oxidation Fuels the TCA Cycle. Cell Metabolism, 2017, 26, 803-804.	16.2	44
100	Mitochondrial control of immunity: beyond ATP. Nature Reviews Immunology, 2017, 17, 608-620.	22.7	306
101	The Two Faces of Reactive Oxygen Species in Cancer. Annual Review of Cancer Biology, 2017, 1, 79-98.	4.5	395
102	Disease Specific Signatures Identified by RNAâ€seq of Sorted Lung Cellular Populations. FASEB Journal, 2017, 31, 656.4.	0.5	0
103	HSC Fate Is Tethered to Mitochondria. Cell Stem Cell, 2016, 18, 303-304.	11.1	8
104	Intermediate filament aggregates cause mitochondrial dysmotility and increase energy demands in giant axonal neuropathy. Human Molecular Genetics, 2016, 25, 2143-2157.	2.9	44
105	Are Metformin Doses Used in Murine Cancer Models Clinically Relevant?. Cell Metabolism, 2016, 23, 569-570.	16.2	140
106	Mitochondrial ROS regulation of proliferating cells. Free Radical Biology and Medicine, 2016, 100, 86-93.	2.9	316
107	The Mitochondrial Respiratory Chain Is Required for Organismal Adaptation to Hypoxia. Cell Reports, 2016, 15, 451-459.	6.4	45
108	Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6372-E6381.	7.1	56

#	Article	IF	CITATIONS
109	Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nature Cell Biology, 2016, 18, 823-832.	10.3	238
110	Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage. Free Radical Biology and Medicine, 2016, 101, 482-490.	2.9	68
111	Transforming Growth Factor (TGF)- \hat{l}^2 Promotes de Novo Serine Synthesis for Collagen Production. Journal of Biological Chemistry, 2016, 291, 27239-27251.	3.4	102
112	Fundamentals of cancer metabolism. Science Advances, 2016, 2, e1600200.	10.3	2,039
113	Targeting Tumor Mitochondrial Metabolism Overcomes Resistance to Antiangiogenics. Cell Reports, 2016, 15, 2705-2718.	6.4	78
114	TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions. Molecular Cell, 2016, 61, 199-209.	9.7	396
115	Mitochondria Coordinate Intracellular Metabolism and Epigenetic Gene Regulation during Erythropoiesis. Blood, 2016, 128, 1038-1038.	1.4	0
116	Blue Journal Conference. Aging and Susceptibility to Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 261-269.	5.6	149
117	Targeting metabolism for lupus therapy. Science Translational Medicine, 2015, 7, 274fs5.	12.4	13
118	Revisiting vitamin C and cancer. Science, 2015, 350, 1317-1318.	12.6	51
119	Evolution of Mitochondria as Signaling Organelles. Cell Metabolism, 2015, 22, 204-206.	16.2	395
120	Mitochondria in the Regulation of Innate and Adaptive Immunity. Immunity, 2015, 42, 406-417.	14.3	693
121	The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nature Immunology, 2015, 16, 458-466.	14.5	60
122	Targeting mitochondria metabolism for cancer therapy. Nature Chemical Biology, 2015, 11, 9-15.	8.0	1,107
123	ROS-dependent signal transduction. Current Opinion in Cell Biology, 2015, 33, 8-13.	5.4	678
124	Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. ELife, 2014, 3, e02242.	6.0	851
125	Mitochondrial One-Carbon Metabolism Maintains Redox Balance during Hypoxia. Cancer Discovery, 2014, 4, 1371-1373.	9.4	51
126	Mitochondrial metabolism in TCA cycle mutant cancer cells. Cell Cycle, 2014, 13, 347-348.	2.6	12

#	Article	IF	CITATIONS
127	Death Induced by CD95 or CD95 Ligand Elimination. Cell Reports, 2014, 7, 208-222.	6.4	66
128	TOR Signaling Couples Oxygen Sensing to Lifespan in C.Âelegans. Cell Reports, 2014, 9, 9-15.	6.4	74
129	Reply: Antioxidants in the Intensive Care Unit. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1008-1008.	5.6	0
130	HOIL-1L Functions as the PKCζ Ubiquitin Ligase to Promote Lung Tumor Growth. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 688-698.	5.6	34
131	Futility Sustains Memory T Cells. Immunity, 2014, 41, 1-3.	14.3	22
132	Targeting antioxidants for cancer therapy. Biochemical Pharmacology, 2014, 92, 90-101.	4.4	370
133	Intratracheal administration of influenza virus is superior to intranasal administration as a model of acute lung injury. Journal of Virological Methods, 2014, 209, 116-120.	2.1	26
134	Mitochondria and cancer. Cancer & Metabolism, 2014, 2, 8.	5.0	32
135	The Promise and Perils of Antioxidants for Cancer Patients. New England Journal of Medicine, 2014, 371, 177-178.	27.0	169
136	ROS Function in Redox Signaling and Oxidative Stress. Current Biology, 2014, 24, R453-R462.	3.9	4,622
137	Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects. Cell Reports, 2014, 7, 1679-1690.	6.4	281
138	Mitochondrial reactive oxygen species and cancer. Cancer & Metabolism, 2014, 2, 17.	5.0	574
139	Mitochondria as signaling organelles. BMC Biology, 2014, 12, 34.	3.8	413
140	Targeting SOD1 reduces experimental non–small-cell lung cancer. Journal of Clinical Investigation, 2014, 124, 117-128.	8.2	172
141	β2-Adrenergic agonists augment air pollution–induced IL-6 release and thrombosis. Journal of Clinical Investigation, 2014, 124, 2935-2946.	8.2	106
142	Hexokinase 2 Is Required for Tumor Initiation and Maintenance and Its Systemic Deletion Is Therapeutic in Mouse Models of Cancer. Cancer Cell, 2013, 24, 213-228.	16.8	678
143	Asbestos-Induced Alveolar Epithelial Cell Apoptosis. The Role of Endoplasmic Reticulum Stress Response. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 892-901.	2.9	61
144	Metabolic changes in cancer cells upon suppression of MYC. Cancer & Metabolism, 2013, 1, 7.	5.0	54

#	Article	IF	Citations
145	Circadian Clock NAD ⁺ Cycle Drives Mitochondrial Oxidative Metabolism in Mice. Science, 2013, 342, 1243417.	12.6	525
146	Mitochondrial Reactive Oxygen Species Regulate Transforming Growth Factor- \hat{l}^2 Signaling. Journal of Biological Chemistry, 2013, 288, 770-777.	3.4	307
147	Mitochondria Are Required for Antigen-Specific T Cell Activation through Reactive Oxygen Species Signaling. Immunity, 2013, 38, 225-236.	14.3	981
148	ROS Links Glucose Metabolism to Breast Cancer Stem Cell and EMT Phenotype. Cancer Cell, 2013, 23, 265-267.	16.8	114
149	ROS. Current Biology, 2013, 23, R100-R102.	3.9	71
150	The Proto-oncometabolite Fumarate Binds Glutathione to Amplify ROS-Dependent Signaling. Molecular Cell, 2013, 51, 236-248.	9.7	244
151	Rethinking Antioxidants in the Intensive Care Unit. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1283-1285.	5.6	28
152	Matrix Metalloproteinase (MMP)-1 Induces Lung Alveolar Epithelial Cell Migration and Proliferation, Protects from Apoptosis, and Represses Mitochondrial Oxygen Consumption. Journal of Biological Chemistry, 2013, 288, 25964-25975.	3.4	94
153	Mitochondrial Reactive Oxygen Species Promote Epidermal Differentiation and Hair Follicle Development. Science Signaling, 2013, 6, ra8.	3.6	276
154	The Good and the Bad of Antibiotics. Science Translational Medicine, 2013, 5, 192fs25.	12.4	12
155	Mitochondrial metabolism as a regulator of keratinocyte differentiation. Cellular Logistics, 2013, 3, e25456.	0.9	42
156	MicroRNAâ€31 targets FIHâ€1 to positively regulate corneal epithelial glycogen metabolism. FASEB Journal, 2012, 26, 3140-3147.	0.5	53
157	microRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14030-14034.	7.1	102
158	Proteasomal inhibition after injury prevents fibrosis by modulating TGF- \hat{l}^2 (sub>1signalling. Thorax, 2012, 67, 139-146.	5.6	77
159	Mitochondria and Telomeres: The Promiscuous Roles of TIN2. Molecular Cell, 2012, 47, 823-824.	9.7	12
160	Mitochondrial Genome Instability and ROS Enhance Intestinal Tumorigenesis in APC Mice. American Journal of Pathology, 2012, 180, 24-31.	3.8	123
161	Physiological Roles of Mitochondrial Reactive Oxygen Species. Molecular Cell, 2012, 48, 158-167.	9.7	2,067
162	Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 2012, 481, 385-388.	27.8	1,074

#	Article	IF	CITATIONS
163	Alcohol Worsens Acute Lung Injury by Inhibiting Alveolar Sodium Transport through the Adenosine A1 Receptor. PLoS ONE, 2012, 7, e30448.	2.5	15
164	AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature, 2012, 485, 661-665.	27.8	934
165	Targeting glucose metabolism for cancer therapy. Journal of Experimental Medicine, 2012, 209, 211-215.	8.5	333
166	Mitochondrial Complex III ROS Regulate Adipocyte Differentiation. Cell Metabolism, 2011, 14, 537-544.	16.2	550
167	Seeing the Light: Probing ROS InÂVivo Using Redox GFP. Cell Metabolism, 2011, 14, 720-721.	16.2	6
168	Hypoxia. 2. Hypoxia regulates cellular metabolism. American Journal of Physiology - Cell Physiology, 2011, 300, C385-C393.	4.6	324
169	NF- $\hat{\mathbb{P}}$ B controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nature Cell Biology, 2011, 13, 1272-1279.	10.3	306
170	Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung. Nano Letters, 2011, 11, 5201-5207.	9.1	480
171	Leptin Promotes Fibroproliferative Acute Respiratory Distress Syndrome by Inhibiting Peroxisome Proliferator–activated Receptor-γ. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1490-1498.	5.6	91
172	Hypoxia Leads to Na,K-ATPase Downregulation via Ca ²⁺ Release-Activated Ca ²⁺ Channels and AMPK Activation. Molecular and Cellular Biology, 2011, 31, 3546-3556.	2.3	127
173	Warburg Effect and Redox Balance. Science, 2011, 334, 1219-1220.	12.6	122
174	The role of nuclear lamin B1 in cell proliferation and senescence. Genes and Development, 2011, 25, 2579-2593.	5.9	417
175	Epithelial Cell Death Is an Important Contributor to Oxidant-mediated Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1043-1054.	5.6	93
176	Elevated CO2 Levels Cause Mitochondrial Dysfunction and Impair Cell Proliferation. Journal of Biological Chemistry, 2011, 286, 37067-37076.	3.4	145
177	Mitochondrial complex III: An essential component of universal oxygen sensing machinery?. Respiratory Physiology and Neurobiology, 2010, 174, 175-181.	1.6	49
178	Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends in Biochemical Sciences, 2010, 35, 505-513.	7.5	794
179	Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radical Biology and Medicine, 2010, 49, 1925-1936.	2.9	213
180	Interâ€connection between mitochondria and HIFs. Journal of Cellular and Molecular Medicine, 2010, 14, 795-804.	3.6	64

#	Article	IF	CITATIONS
181	Mitochondrial reactive oxygen species are required for hypoxiaâ€induced degradation of keratin intermediate filaments. FASEB Journal, 2010, 24, 799-809.	0.5	39
182	Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8788-8793.	7.1	1,402
183	Mitochondrial Regulation of Oxygen Sensing. Advances in Experimental Medicine and Biology, 2010, 661, 339-354.	1.6	79
184	Hyperoxiaâ€induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. FASEB Journal, 2009, 23, 783-794.	0.5	57
185	Mitochondrial Complex III-generated Oxidants Activate ASK1 and JNK to Induce Alveolar Epithelial Cell Death following Exposure to Particulate Matter Air Pollution. Journal of Biological Chemistry, 2009, 284, 2176-2186.	3.4	117
186	α1-AMP-Activated Protein Kinase Regulates Hypoxia-Induced Na,K-ATPase Endocytosis via Direct Phosphorylation of Protein Kinase Cζ. Molecular and Cellular Biology, 2009, 29, 3455-3464.	2.3	107
187	Proapoptotic Noxa is required for particulate matterâ€induced cell death and lung inflammation. FASEB Journal, 2009, 23, 2055-2064.	0.5	36
188	Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radical Biology and Medicine, 2009, 46, 1386-1391.	2.9	269
189	Mitochondrial reactive oxygen species regulate hypoxic signaling. Current Opinion in Cell Biology, 2009, 21, 894-899.	5.4	267
190	Reactive oxygen species-dependent signaling regulates cancer. Cellular and Molecular Life Sciences, 2009, 66, 3663-3673.	5.4	241
191	Mitochondrial Metabolism and Cancer. Annals of the New York Academy of Sciences, 2009, 1177, 66-73.	3.8	138
192	Mitochondrial Regulation of Cell Survival and Death During Low-Oxygen Conditions. Antioxidants and Redox Signaling, 2009, 11, 2673-2683.	5.4	51
193	Keratinocyte growth factor expression is suppressed in early acute lung injury/acute respiratory distress syndrome by smad and c-Abl pathways*. Critical Care Medicine, 2009, 37, 1678-1684.	0.9	43
194	BH3 Peptides Induce Mitochondrial Fission and Cell Death Independent of BAX/BAK. PLoS ONE, 2009, 4, e5646.	2.5	24
195	Nitric Oxide Induces Cell Death by Regulating Anti-Apoptotic BCL-2 Family Members. PLoS ONE, 2009, 4, e7059.	2.5	101
196	Targeting the Mitochondria for Cancer Therapy: Regulation of Hypoxia-Inducible Factor by Mitochondria. Antioxidants and Redox Signaling, 2008, 10, 635-640.	5.4	30
197	Loss of the SdhB, but Not the SdhA, Subunit of Complex II Triggers Reactive Oxygen Species-Dependent Hypoxia-Inducible Factor Activation and Tumorigenesis. Molecular and Cellular Biology, 2008, 28, 718-731.	2.3	392
198	Hypoxiaâ€mediated Naâ€Kâ€ATPase degradation requires von Hippel Lindau protein. FASEB Journal, 2008, 22, 1335-1342.	0.5	35

#	Article	IF	Citations
199	A chemical genomics screen highlights the essential role of mitochondria in HIF-1 regulation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 174-179.	7.1	111
200	PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2622-2627.	7.1	193
201	AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis. Journal of Clinical Investigation, 2008, 118, 752-62.	8.2	146
202	Genetics of Mitochondrial Electron Transport Chain in Regulating Oxygen Sensing. Methods in Enzymology, 2007, 435, 447-461.	1.0	12
203	The Intrinsic Apoptotic Pathway Is Required for Lipopolysaccharide-Induced Lung Endothelial Cell Death. Journal of Immunology, 2007, 179, 1834-1841.	0.8	56
204	Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Inducible Factor-Dependent Extension of the Replicative Life Span during Hypoxia. Molecular and Cellular Biology, 2007, 27, 5737-5745.	2.3	202
205	Bcl-2 Family Members Regulate Anoxia-Induced Cell Death. Antioxidants and Redox Signaling, 2007, 9, 1405-1410.	5.4	29
206	Role of Bcl-2 Family Members in Anoxia Induced Cell Death. Cell Cycle, 2007, 6, 807-809.	2.6	37
207	Leptin Resistance Protects Mice from Hyperoxia-induced Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 587-594.	5.6	101
208	Loss of Mcl-1 Protein and Inhibition of Electron Transport Chain Together Induce Anoxic Cell Death. Molecular and Cellular Biology, 2007, 27, 1222-1235.	2.3	40
209	The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. Journal of Cell Biology, 2007, 177, 1029-1036.	5.2	510
210	Bronchoalveolar lavage fluid from patients with acute lung injury/acute respiratory distress syndrome induces myofibroblast differentiation. Critical Care Medicine, 2007, 35, 842-848.	0.9	32
211	Compound C inhibits hypoxic activation of HIFâ€1 independent of AMPK. FEBS Letters, 2007, 581, 5727-5731.	2.8	93
212	The cellular basis for diverse responses to oxygen. Free Radical Biology and Medicine, 2007, 42, 165-174.	2.9	235
213	Hypoxic conformance of metabolism in primary rat hepatocytes: A model of hepatic hibernation. Hepatology, 2007, 45, 455-464.	7.3	32
214	Nitric oxide during ischemia attenuates oxidant stress and cell death during ischemia and reperfusion in cardiomyocytes. Free Radical Biology and Medicine, 2007, 43, 590-599.	2.9	42
215	Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Essays in Biochemistry, 2007, 43, 17-28.	4.7	85
216	Ambient particulate matter accelerates coagulation via an IL-6–dependent pathway. Journal of Clinical Investigation, 2007, 117, 2952-2961.	8.2	256

#	Article	IF	Citations
217	Airborne Particulate Matter Inhibits Alveolar Fluid Reabsorption in Mice via Oxidant Generation. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 670-676.	2.9	30
218	P53 Mediates Amosite Asbestos–Induced Alveolar Epithelial Cell Mitochondria-Regulated Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 443-452.	2.9	62
219	Hypoxia-Mediated Degradation of Na,K-ATPase via Mitochondrial Reactive Oxygen Species and the Ubiquitin-Conjugating System. Circulation Research, 2006, 98, 1314-1322.	4.5	105
220	Proapoptotic Bid is required for pulmonary fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4604-4609.	7.1	99
221	Active transforming growth factor \hat{l}^21 activates the procollagen I promoter in patients with acute lung injury. Intensive Care Medicine, 2005, 31, 121-128.	8.2	72
222	Intrinsic Mechanism of Estradiol-Induced Apoptosis in Breast Cancer Cells Resistant to Estrogen Deprivation. Journal of the National Cancer Institute, 2005, 97, 1746-1759.	6.3	229
223	Mitochondrial Reactive Oxygen Species Activation of p38 Mitogen-Activated Protein Kinase Is Required for Hypoxia Signaling. Molecular and Cellular Biology, 2005, 25, 4853-4862.	2.3	245
224	Mitochondrial regulation of oxygen sensing. Mitochondrion, 2005, 5, 322-332.	3.4	114
225	Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metabolism, 2005, 1, 409-414.	16.2	678
226	Follicle-stimulating Hormone Activation of Hypoxia-inducible Factor-1 by the Phosphatidylinositol 3-Kinase/AKT/Ras Homolog Enriched in Brain (Rheb)/Mammalian Target of Rapamycin (mTOR) Pathway Is Necessary for Induction of Select Protein Markers of Follicular Differentiation. Journal of Biological Chemistry, 2004, 279, 19431-19440.	3.4	224
227	Reactive Oxygen Species Are Required for Hyperoxia-induced Bax Activation and Cell Death in Alveolar Epithelial Cells. Journal of Biological Chemistry, 2004, 279, 6753-6760.	3.4	154
228	c-Myc Sensitization to Oxygen Deprivation-induced Cell Death Is Dependent on Bax/Bak, but Is Independent of p53 and Hypoxia-inducible Factor-1. Journal of Biological Chemistry, 2004, 279, 4305-4312.	3.4	48
229	Hexokinase-Mitochondria Interaction Mediated by Akt Is Required to Inhibit Apoptosis in the Presence or Absence of Bax and Bak. Molecular Cell, 2004, 16, 819-830.	9.7	592
230	The Mitochondria-Regulated Death Pathway Mediates Asbestos-Induced Alveolar Epithelial Cell Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 241-248.	2.9	71
231	Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-ζ. Journal of Clinical Investigation, 2003, 111, 1057-1064.	8.2	244
232	Angiostatin(4.5)-mediated apoptosis of vascular endothelial cells. Cancer Research, 2003, 63, 4275-80.	0.9	36
233	Hypoxia Sensitizes Cells to Nitric Oxide-induced Apoptosis. Journal of Biological Chemistry, 2002, 277, 16067-16074.	3.4	44
234	Bcl-2 Family Members and Functional Electron Transport Chain Regulate Oxygen Deprivation-Induced Cell Death. Molecular and Cellular Biology, 2002, 22, 94-104.	2.3	159

#	Article	IF	CITATIONS
235	Hyperoxia-induced Apoptosis Does Not Require Mitochondrial Reactive Oxygen Species and Is Regulated by Bcl-2 Proteins. Journal of Biological Chemistry, 2002, 277, 15654-15660.	3.4	89
236	[2] Detection of oxygen-sensing properties of mitochondria. Methods in Enzymology, 2002, 352, 31-40.	1.0	2
237	Hypoxic but not anoxic stabilization of HIF-1α requires mitochondrial reactive oxygen species. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L922-L931.	2.9	230
238	Title is missing!. Molecular and Cellular Biochemistry, 2002, 234/235, 153-160.	3.1	71
239	Oxygen deprivation induced cell death: an update. Apoptosis: an International Journal on Programmed Cell Death, 2002, 7, 475-482.	4.9	153
240	Model for Hypoxic Pulmonary Vasoconstriction Involving Mitochondrial Oxygen Sensing. Circulation Research, 2001, 88, 1259-1266.	4.5	345
241	Reactive Oxygen Species Are Downstream Products of TRAF-mediated Signal Transduction. Journal of Biological Chemistry, 2001, 276, 42728-42736.	3.4	174
242	Redox regulation of p53 during hypoxia. Oncogene, 2000, 19, 3840-3848.	5.9	148
243	Cellular oxygen sensing by mitochondria: old questions, new insight. Journal of Applied Physiology, 2000, 88, 1880-1889.	2.5	344
244	Stretching the lung and programmed cell death. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L1003-L1004.	2.9	11
245	Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1α during Hypoxia. Journal of Biological Chemistry, 2000, 275, 25130-25138.	3.4	1,697
246	Role of Oxidants in NF-κB Activation and TNF-α Gene Transcription Induced by Hypoxia and Endotoxin. Journal of Immunology, 2000, 165, 1013-1021.	0.8	472
247	Bcl-xL Prevents Cell Death following Growth Factor Withdrawal by Facilitating Mitochondrial ATP/ADP Exchange. Molecular Cell, 1999, 3, 159-167.	9.7	476
248	Intracellular Signaling by Reactive Oxygen Species during Hypoxia in Cardiomyocytes. Journal of Biological Chemistry, 1998, 273, 11619-11624.	3.4	601
249	Hibernation during Hypoxia in Cardiomyocytes. Journal of Biological Chemistry, 1998, 273, 3320-3326.	3.4	143
250	Cellular Respiration during Hypoxia. Journal of Biological Chemistry, 1997, 272, 18808-18816.	3.4	163
251	Bcl-xL Regulates the Membrane Potential and Volume Homeostasis of Mitochondria. Cell, 1997, 91, 627-637.	28.9	1,345
252	Molecular Oxygen Modulates Cytochrome c Oxidase Function. Journal of Biological Chemistry, 1996, 271, 18672-18677.	3.4	123