Leo-Philipp Heiniger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10569113/publications.pdf

Version: 2024-02-01

1478505 1872680 6 672 6 6 citations h-index g-index papers 6 6 6 1313 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO ₂ Beads Achieve Power Conversion Efficiencies Over 10%. ACS Nano, 2010, 4, 4420-4425.	14.6	412
2	Strong Photocurrent Amplification in Perovskite Solar Cells with a Porous TiO ₂ Blocking Layer under Reverse Bias. Journal of Physical Chemistry Letters, 2014, 5, 3931-3936.	4.6	104
3	Mesoporous TiO ₂ Beads Offer Improved Mass Transport for Cobaltâ€Based Redox Couples Leading to High Efficiency Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400168.	19.5	65
4	Seeâ€Through Dyeâ€Sensitized Solar Cells: Photonic Reflectors for Tandem and Building Integrated Photovoltaics. Advanced Materials, 2013, 25, 5734-5741.	21.0	51
5	Time-Resolved Indirect Nanoplasmonic Sensing Spectroscopy of Dye Molecule Interactions with Dense and Mesoporous TiO ₂ Films. Nano Letters, 2012, 12, 2397-2403.	9.1	24
6	Diffusion and adsorption of dye molecules in mesoporous TiO2 photoelectrodes studied by indirect nanoplasmonic sensing. Energy and Environmental Science, 2013, 6, 3627.	30.8	16