Wenfeng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1056812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic retrieval of ionic liquids: Fast dispersive liquid–liquid microextraction for the determination of benzoylurea insecticides in environmental water samples. Journal of Chromatography A, 2012, 1254, 23-29.	3.7	115
2	Deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of ultraviolet filters in water samples. Journal of Chromatography A, 2017, 1516, 1-8.	3.7	93
3	Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid–liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology. Analytica Chimica Acta, 2016, 906, 118-127.	5.4	85
4	Facile synthesis of multifunctional attapulgite/Fe3O4/polyaniline nanocomposites for magnetic dispersive solid phase extraction of benzoylurea insecticides in environmental water samples. Analytica Chimica Acta, 2016, 934, 114-121.	5.4	72
5	In-syringe dispersive liquid-liquid microextraction based on the solidification of ionic liquids for the determination of benzoylurea insecticides in water and tea beverage samples. Talanta, 2017, 162, 625-633.	5.5	69
6	Using β-cyclodextrin/attapulgite-immobilized ionic liquid as sorbent in dispersive solid-phase microextraction to detect the benzoylurea insecticide contents of honey and tea beverages. Food Chemistry, 2016, 197, 1064-1072.	8.2	66
7	Enantioselective degradation of fipronil in Chinese cabbage (Brassica pekinensis). Food Chemistry, 2008, 110, 399-405.	8.2	65
8	Centrifuge-less dispersive liquid-liquid microextraction base on the solidification of switchable solvent for rapid on-site extraction of four pyrethroid insecticides in water samples. Journal of Chromatography A, 2016, 1472, 1-9.	3.7	60
9	Attapulgite modified magnetic metal-organic frameworks for magnetic solid phase extraction and determinations of benzoylurea insecticides in tea infusions. Food Chemistry, 2020, 317, 126425.	8.2	54
10	Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples. Journal of Chromatography A, 2015, 1381, 37-47.	3.7	50
11	Effervescence-assisted β-cyclodextrin/attapulgite composite for the in-syringe dispersive solid-phase extraction of pyrethroids in environmental water samples. Talanta, 2016, 153, 353-359.	5.5	49
12	In-situ metathesis reaction combined with ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction method for the determination of phenylurea pesticides in water samples. Talanta, 2012, 98, 145-151.	5.5	48
13	A dispersive magnetic solid phase microextraction based on ionic liquid-coated and cyclodextrin-functionalized magnetic core dendrimer nanocomposites for the determination of pyrethroids in juice samples. Food Chemistry, 2018, 268, 485-491.	8.2	46
14	Application of ionic liquids for liquid–liquid microextraction. Analytical Methods, 2013, 5, 5376.	2.7	43
15	β-CD/ATP composite materials for use in dispersive solid-phase extraction to measure (fluoro)quinolone antibiotics in honey samples. Analytica Chimica Acta, 2015, 878, 131-139.	5.4	42
16	lonic liquid-assisted liquid-phase microextraction based on the solidification of floating organic droplets combined with high performance liquid chromatography for the determination of benzoylurea insecticide in fruit juice. Journal of Chromatography A, 2014, 1360, 47-56.	3.7	41
17	Vortex-assisted deep eutectic solvent reversed-phase liquid–liquid microextraction of triazine herbicides in edible vegetable oils. Journal of Chromatography A, 2019, 1589, 10-17.	3.7	41
18	Dispersive liquid–liquid microextraction based on the solidification of deep eutectic solvent for the determination of benzoylureas in environmental water samples. Journal of Separation Science, 2017, 40, 4563-4570.	2.5	39

WENFENG ZHOU

#	Article	IF	CITATIONS
19	In situ metathesis reaction combined with liquid-phase microextraction based on the solidification of sedimentary ionic liquids for the determination of pyrethroid insecticides in water samples. Talanta, 2015, 144, 98-104.	5.5	37
20	A rapid and simple pretreatment method for benzoylurea insecticides in honey samples using in-syringe dispersive liquid–liquid microextraction based on the direct solidification of ionic liquids. Journal of Chromatography A, 2016, 1471, 60-67.	3.7	37
21	Extraction of benzoylurea pesticides from tea and fruit juices using deep eutectic solvents. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1140, 121995.	2.3	35
22	Effervescence-assisted dispersive liquid–liquid microextraction based on the solidification of a floating ionic liquid with a special collection method for the rapid determination of benzoylurea insecticides in water samples. RSC Advances, 2016, 6, 95283-95291.	3.6	34
23	Detection of triazole pesticides in environmental water and juice samples using dispersive liquid–liquid microextraction with solidified sedimentary ionic liquids. New Journal of Chemistry, 2016, 40, 4696-4704.	2.8	33
24	Magnetic mixed hemimicelles dispersive solid-phase extraction based on ionic liquid-coated attapulgite/polyaniline-polypyrrole/Fe 3 O 4 nanocomposites for determination of acaricides in fruit juice prior to high-performance liquid chromatography-diode array detection. Talanta, 2017, 166, 93-100.	5.5	33
25	Determination of benzoylurea insecticides in environmental water and honey samples using ionic-liquid-mingled air-assisted liquid–liquid microextraction based on solidification of floating organic droplets. RSC Advances, 2015, 5, 25572-25580.	3.6	32
26	Rapid analysis of fungicides in tea infusions using ionic liquid immobilized fabric phase sorptive extraction with the assistance of surfactant fungicides analysis using IL-FPSE assisted with surfactant. Food Chemistry, 2018, 239, 797-805.	8.2	32
27	PEG-modified magnetic Schiff base network-1 materials for the magnetic solid phase extraction of benzoylurea pesticides from environmental water samples. Journal of Chromatography A, 2020, 1619, 460950.	3.7	32
28	Magnetic nanoparticles modified with hyperbranched polyamidoamine for the extraction of benzoylurea insecticides prior to their quantitation by HPLC. Mikrochimica Acta, 2019, 186, 351.	5.0	28
29	Determination of triazole pesticides in rat blood by the combination of ultrasound-enhanced temperature-controlled ionic liquid dispersive liquid–liquid microextraction coupled to high-performance liquid chromatography. Analytical Methods, 2013, 5, 2241.	2.7	27
30	Dispersive microâ€solidâ€phase extraction of benzoylurea insecticides in honey samples with a βâ€cyclodextrinâ€modified attapulgite composite as sorbent. Journal of Separation Science, 2016, 39, 412-418.	2.5	24
31	In situ solvent formation microextraction combined with magnetic dispersive microâ€solidâ€phase extraction for the determination of benzoylurea insecticides in water samples. Journal of Separation Science, 2017, 40, 442-448.	2.5	24
32	lonic liquid-type surfactant modified attapulgite as a novel and efficient dispersive solid phase material for fast determination of pyrethroids in tea drinks. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1089, 70-77.	2.3	23
33	Control of Biohazards: A High Performance Energetic Polycyclized Iodine-Containing Biocide. Inorganic Chemistry, 2018, 57, 8673-8680.	4.0	23
34	Effervescenceâ€assisted dispersive solidâ€phase extraction using ionicâ€liquidâ€modified magnetic βâ€cyclodextrin/attapulgite coupled with highâ€performance liquid chromatography for fungicide detection in honey and juice. Journal of Separation Science, 2016, 39, 4422-4428.	2.5	20
35	Magnetic solidâ€phase extraction of benzoylurea insecticides in tea samples with Fe ₃ O ₄ â€hyperbranched polyester magnetic composite as sorbent. Journal of Separation Science, 2019, 42, 1610-1619.	2.5	20
36	Hydrophobic deep eutectic solvents based membrane emulsification-assisted liquid-phase microextraction method for determination of pyrethroids in tea beverages. Journal of Chromatography A, 2020, 1623, 461204.	3.7	20

WENFENG ZHOU

#	Article	IF	CITATIONS
37	Pipette vial dispersive liquid–liquid microextraction combined with highâ€performance liquid chromatography for the determination of benzoylurea insecticide in fruit juice. Journal of Separation Science, 2016, 39, 391-398.	2.5	18
38	Dispersive solid-phase extraction based on β-cyclodextrin grafted hyperbranched polymers for determination of pyrethroids in environmental water samples. Microchemical Journal, 2019, 150, 104164.	4.5	18
39	In-syringe low-density ionic liquid dispersive liquid–liquid microextraction for the fast determination of pyrethroid insecticides in environmental water samples by HPLC-DAD. RSC Advances, 2016, 6, 69218-69225.	3.6	17
40	Liquid phase microextraction based on the solidification of a floating ionic liquid combined with high-performance liquid chromatography for the preconcentration of phthalate esters in environmental waters and in bottled beverages. RSC Advances, 2016, 6, 36223-36230.	3.6	16
41	Ultrasoundâ€assisted, hybrid ionic liquid, dispersive liquid–liquid microextraction for the determination of insecticides in fruit juices based on partition coefficients. Journal of Separation Science, 2017, 40, 3513-3521.	2.5	16
42	Determination of four pyrethroid insecticides in water samples through membrane emulsification-assisted liquid–liquid microextraction based on solidification of floating organic droplets. Journal of Chromatography A, 2018, 1559, 86-94.	3.7	16
43	Ionic liquid-modified luffa sponge fibers for dispersive solid-phase extraction of benzoylurea insecticides from water and tea beverage samples. New Journal of Chemistry, 2018, 42, 8791-8799.	2.8	15
44	Magnetic Solid-Phase Extraction of Dichlorodiphenyltrichloroethane and Its Metabolites from Environmental Water Samples Using Ionic Liquid Modified Magnetic Multiwalled Carbon Nanotube/Zeolitic Imidazolate Framework-8 as Sorbent. Molecules, 2019, 24, 2758.	3.8	15
45	Rapid determination of the pesticide ametryn based on a colorimetric aptasensor of gold nanoparticles. Analytical Methods, 2020, 12, 1919-1925.	2.7	14
46	USE OF IONIC LIQUID-BASED DISPERSIVE LIQUID–LIQUID MICROEXTRACTION AND HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY TO DETECT FORMALDEHYDE IN AIR, WATER, AND SOIL SAMPLES. Journal of Liquid Chromatography and Related Technologies, 2014, 37, 815-828.	1.0	13
47	Synthesis, Characterization and Energetic Properties of 1,3,4â€Oxadiazoles. European Journal of Organic Chemistry, 2015, 2015, 5183-5188.	2.4	13
48	Preparation of magnetic attapulgite/polypyrrole nanocomposites for magnetic effervescenceâ€assisted dispersive solidâ€phase extraction of pyrethroids from honey samples. Journal of Separation Science, 2020, 43, 2419-2428.	2.5	13
49	Formation of organic chloramines during chlorination of 18 compounds. Water Research, 2021, 204, 117570.	11.3	13
50	Ultrasound-assisted emulsification magnetic microextraction: a fast and green method for the determination of triazole fungicides in fruit juice. Analytical Methods, 2014, 6, 8328-8336.	2.7	12
51	Colorimetric assay based on arginine-functionalized gold nanoparticles for the detection of dibutyl phthalate in Baijiu samples. Analytical Methods, 2021, 13, 5179-5186.	2.7	12
52	Directly suspended-solidified floating organic droplets for the determination of fungicides in water and honey samples. Analytical Methods, 2014, 6, 7510-7517.	2.7	11
53	Synthesis and Properties of Energetic 1,2,4â€Oxadiazoles. European Journal of Organic Chemistry, 2015, 2015, 7468-7474.	2.4	11
54	Dispersive micro-solid-phase extraction of benzoylurea insecticides in water samples with hyperbranched polyester composite as sorbent. New Journal of Chemistry, 2018, 42, 13978-13984.	2.8	11

WENFENG ZHOU

#	Article	IF	CITATIONS
55	Volatile organic chloramines formation during ClO2 treatment. Journal of Environmental Sciences, 2020, 92, 256-263.	6.1	10
56	Phenylboronic acidâ€functionalized crossâ€linked chitosan magnetic adsorbents for the magnetic solidâ€phase extraction of benzoylurea pesticides. Journal of Separation Science, 2022, 45, 908-918.	2.5	10
57	Magnetic zinc oxide nanoflower-assisted ionic liquid-based nanofluid dispersive liquid–liquid microextraction for the rapid determination of acaricides in tea infusions. RSC Advances, 2016, 6, 111982-111992.	3.6	9
58	Dispersive micro-solid phase extraction based on a graphene/polydopamine composite for the detection of pyrethroids in water samples. Analytical Methods, 2020, 12, 3115-3122.	2.7	9
59	Slow-Injection Ultrasound-Assisted Emulsiffation–Microextraction for Determination of Phthalate Esters in Waterâ€. Journal of Chromatographic Science, 2014, 52, 1127-1134.	1.4	8
60	The extraction of pyrethroid insecticides in juice and tea beverages by liquid-phase microextraction using deep eutectic solvents. Analytical Methods, 2019, 11, 4923-4930.	2.7	8
61	Free chlorine formation in the process of the chlorine dioxide oxidation of aliphatic amines. Water Research, 2022, 217, 118399.	11.3	8
62	Study on the adsorption mechanism of benzoylurea insecticides onto modified hyperbranched polysilicon materials. RSC Advances, 2020, 10, 28664-28673.	3.6	5
63	Hyperbranched aromatic polyamide modified magnetic nanoparticles for the extraction of benzoylurea insecticides. Journal of Separation Science, 2021, 44, 1931-1938.	2.5	5
64	Phosphoniumâ€based deep eutectic solvent coupled with vortexâ€assisted liquid–liquid microextraction for the determination of benzoylurea insecticides in olive oil. Journal of Separation Science, 2021, 44, 1529-1536.	2.5	5
65	Humic acid functionalized hyperbranched polytriazine based dispersive solidâ€phase extraction for acaricides determination in tea matrix. Journal of Separation Science, 2020, 43, 496-504.	2.5	3
66	1-Octyl-3-methylimidazolium hexafluorophosphate-functionalised magnetic poly β-cyclodextrin for magnetic solid-phase extraction ofpyrethroids from tea infusions. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 1-12.	2.3	2
67	Perfluoro octanoic acid–modified magnetic hyperbranched polyamideamine as a sorbent for the extraction of fluorineâ€containing pesticides from water samples. Journal of Separation Science, 2021, 44, 3830-3839.	2.5	1
68	HEATS OF FORMATION FOR BORON COMPOUNDS BASED ON QUANTUM CHEMICAL CALCULATIONS. Journal of Theoretical and Computational Chemistry, 2010, 09, 1009-1019.	1.8	0
69	Use of 1â€octylâ€3â€methylimidazole hexafluorophosphate modified magnetic hyperbranched polyamideamine as sorbent for the extraction of pyrethroid insecticides from tea infusion. Journal of Separation Science, 2021, 44, 2957-2964.	2.5	0
70	An enhanced dispersive liquid-liquid microextraction based on solidification of floating organic drop for the determination of pyrethroid pesticides in tea infusions. New Journal of Chemistry, 0, , .	2.8	0