Hao Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10566803/publications.pdf

Version: 2024-02-01

62 6,218 31 papers citations h-index

68 68 7780
all docs docs citations times ranked citing authors

62

g-index

#	Article	IF	CITATIONS
1	Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie - International Edition, 2015, 54, 11526-11530.	13.8	906
2	Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016, 7, 12967.	12.8	835
3	Surface Coordination of Black Phosphorus for Robust Air and Water Stability. Angewandte Chemie - International Edition, 2016, 55, 5003-5007.	13.8	479
4	Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots. Advanced Optical Materials, 2016, 4, 1223-1229.	7.3	326
5	Rose-bengal-conjugated gold nanorods for inÂvivo photodynamic and photothermal oral cancer therapies. Biomaterials, 2014, 35, 1954-1966.	11.4	276
6	Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials, 2016, 74, 144-154.	11.4	247
7	Inâ€Plane Black Phosphorus/Dicobalt Phosphide Heterostructure for Efficient Electrocatalysis. Angewandte Chemie - International Edition, 2018, 57, 2600-2604.	13.8	209
8	Near-infrared light control of bone regeneration with biodegradable photothermal osteoimplant. Biomaterials, 2019, 193, 1-11.	11.4	181
9	Surface Coordination of Black Phosphorus for Robust Air and Water Stability. Angewandte Chemie, 2016, 128, 5087-5091.	2.0	116
10	Near-infrared light-triggered drug delivery system based on black phosphorus for inÂvivo bone regeneration. Biomaterials, 2018, 179, 164-174.	11.4	115
11	Electrostatic Self-Assembly of Ti ₃ C ₂ T _{<i>x</i>} MXene and Gold Nanorods as an Efficient Surface-Enhanced Raman Scattering Platform for Reliable and High-Sensitivity Determination of Organic Pollutants. ACS Sensors, 2019, 4, 2303-2310.	7.8	106
12	Enhancing Performance of a GaAs/AlGaAs/GaAs Nanowire Photodetector Based on the Two-Dimensional Electron–Hole Tube Structure. Nano Letters, 2020, 20, 2654-2659.	9.1	106
13	Phaseâ€Changing Microcapsules Incorporated with Black Phosphorus for Efficient Solar Energy Storage. Advanced Science, 2020, 7, 2000602.	11.2	95
14	Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers. Biomaterials, 2018, 164, 11-21.	11.4	94
15	Stable black phosphorus/Bi2O3 heterostructures for synergistic cancer radiotherapy. Biomaterials, 2018, 171, 12-22.	11.4	94
16	Efficient Enrichment and Self-Assembly of Hybrid Nanoparticles into Removable and Magnetic SERS Substrates for Sensitive Detection of Environmental Pollutants. ACS Applied Materials & Emp; Interfaces, 2017, 9, 7472-7480.	8.0	84
17	A Lowâ€Cost Metalâ€Free Photocatalyst Based on Black Phosphorus. Advanced Science, 2019, 6, 1801321.	11.2	79
18	Bimodal optical diagnostics of oral cancer based on Rose Bengal conjugated gold nanorod platform. Biomaterials, 2013, 34, 4274-4283.	11.4	74

#	Article	IF	CITATIONS
19	Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF ₂ laser. Photonics Research, 2018, 6, 762.	7.0	65
20	Black phosphorus: a two-dimensional reductant for in situ nanofabrication. Npj 2D Materials and Applications, 2017, 1 , .	7.9	63
21	Paper-based plasmonic platform for sensitive, noninvasive, and rapid cancer screening. Biosensors and Bioelectronics, 2014, 54, 128-134.	10.1	62
22	Different-sized black phosphorus nanosheets with good cytocompatibility and high photothermal performance. RSC Advances, 2017, 7, 14618-14624.	3.6	58
23	Crystalline Red Phosphorus Nanoribbons: Largeâ€Scale Synthesis and Electrochemical Nitrogen Fixation. Angewandte Chemie - International Edition, 2020, 59, 14383-14387.	13.8	58
24	Metabolizable Small Gold Nanorods: Size-dependent Cytotoxicity, Cell Uptake and <i>In Vivo</i> Biodistribution. ACS Biomaterials Science and Engineering, 2016, 2, 789-797.	5.2	51
25	Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask. ACS Applied Materials & Shadow Mask. ACS Applied	8.0	50
26	Synthesis of different-sized gold nanostars for Raman bioimaging and photothermal therapy in cancer nanotheranostics. Science China Chemistry, 2017, 60, 1219-1229.	8.2	49
27	Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence. Nano Research, 2015, 8, 2548-2561.	10.4	43
28	Synthesis of bright upconversion submicrocrystals for high-contrast imaging of latent-fingerprints with cyanoacrylate fuming. RSC Advances, 2015, 5, 79525-79531.	3.6	42
29	Highâ€Performance Photoinduced Memory with Ultrafast Charge Transfer Based on MoS ₂ /SWCNTs Network Van Der Waals Heterostructure. Small, 2019, 15, e1804661.	10.0	42
30	Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioactive Materials, 2021, 6, 2854-2869.	15.6	41
31	Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope. Science Advances, 2021, 7, eabf8744.	10.3	37
32	Synthesis of hollow rare-earth compound nanoparticles by a universal sacrificial template method. CrystEngComm, 2014, 16, 6141-6148.	2.6	29
33	Plasmonic CuS nanodisk assembly based composite nanocapsules for NIR-laser-driven synergistic chemo-photothermal cancer therapy. Journal of Materials Chemistry B, 2018, 6, 1035-1043.	5.8	29
34	Sensitive and Robust Colorimetric Sensing of Sulfide Anion by Plasmonic Nanosensors Based on Quick Crystal Growth. Plasmonics, 2014, 9, 11-16.	3.4	28
35	Ultrasonic exfoliated ReS ₂ nanosheets: fabrication and use as co-catalyst for enhancing photocatalytic efficiency of TiO ₂ nanoparticles under sunlight. Nanotechnology, 2019, 30, 184001.	2.6	24
36	Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals. Nature Communications, 2020, 11, 659.	12.8	23

#	Article	IF	Citations
37	Competitive Reaction Pathway for Siteâ€Selective Conjugation of Raman Dyes to Hotspots on Gold Nanorods for Greatly Enhanced SERS Performance. Small, 2014, 10, 4012-4019.	10.0	21
38	Inversion Symmetry Breaking Induced Valley Hall Effect in Multilayer WSe ₂ . ACS Nano, 2019, 13, 9325-9331.	14.6	19
39	Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response. Nano Research, 2021, 14, 1955-1960.	10.4	19
40	Template growth of Au/Ag nanocomposites on phosphorene for sensitive SERS detection of pesticides. Nanotechnology, 2019, 30, 275604.	2.6	15
41	High Voltage Gain WSe ₂ Complementary Compact Inverter With Buried Gate for Local Doping. IEEE Electron Device Letters, 2020, 41, 944-947.	3.9	14
42	Activating Carbon Nitride by BP@Ni for the Enhanced Photocatalytic Hydrogen Evolution and Selective Benzyl Alcohol Oxidation. ACS Applied Materials & Selective Benzyl Alcohol Oxidation. ACS Applied Materials & Selective Benzyl Alcohol Oxidation. ACS Applied Materials & Selective Benzyl Alcohol Oxidation.	8.0	14
43	Photothermal and Enhanced Photocatalytic Therapies Conduce to Synergistic Anticancer Phototherapy with Biodegradable Titanium Diselenide Nanosheets. Small, 2021, 17, e2103239.	10.0	13
44	Thicknessâ€Dependent Structural Stability and Anisotropy of Black Phosphorus. Advanced Electronic Materials, 2019, 5, 1800712.	5.1	11
45	From Octahedron Crystals to 2D Silicon Nanosheets: Facetâ€Selective Cleavage and Biophotonic Applications. Small, 2020, 16, e2003594.	10.0	11
46	Topochemical Synthesis of Copper Phosphide Nanoribbons for Flexible Optoelectronic Memristors. Advanced Functional Materials, 0, , 2110900.	14.9	11
47	Recent advances in long-term stable black phosphorus transistors. Nanoscale, 2020, 12, 20089-20099.	5.6	10
48	Crystalline Red Phosphorus Nanoribbons: Largeâ€Scale Synthesis and Electrochemical Nitrogen Fixation. Angewandte Chemie, 2020, 132, 14489-14493.	2.0	9
49	Hysteresis-free MoS ₂ metal semiconductor field-effect transistors with van der Waals Schottky junction. Nanotechnology, 2021, 32, 135201.	2.6	9
50	Quantum Dots: Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots (Advanced Optical Materials 8/2016). Advanced Optical Materials, 2016, 4, 1222-1222.	7.3	7
51	Black phosphorus field effect transistors stable in harsh conditions via surface engineering. Applied Physics Letters, 2020, 117, .	3.3	7
52	Morphological control of gold nanorods via thermally driven bi-surfactant growth and application for detection of heavy metal ions. Nanotechnology, 2018, 29, 334001.	2.6	6
53	Intercalator-assisted plasma-liquid technology: an efficient exfoliation method for few-layer two-dimensional materials. Science China Materials, 2020, 63, 2079-2085.	6.3	5
54	Gate-tunable linear magnetoresistance in molybdenum disulfide field-effect transistors with graphene insertion layer. Nano Research, 2021, 14, 1814-1818.	10.4	5

#	Article	IF	CITATIONS
55	Cladded Surface-Plasmon-Enhanced BP Photodetector Based on the Damage-Free Metal-Semiconductor Interface. IEEE Transactions on Electron Devices, 2020, , 1-4.	3.0	5
56	Comprehensive insights into effect of van der Waals contact on carbon nanotube network field-effect transistors. Applied Physics Letters, 2019, 115, .	3.3	4
57	Black Phosphorus: Thickness-Dependent Structural Stability and Anisotropy of Black Phosphorus (Adv. Electron. Mater. 3/2019). Advanced Electronic Materials, 2019, 5, 1970012.	5.1	2
58	Near-infrared absorption imaging and processing technologies based on gold nanorods. Wuhan University Journal of Natural Sciences, 2013, 18, 307-312.	0.4	1
59	$ ilde{RA}^{1\!\!/4}$ cktitelbild: Surface Coordination of Black Phosphorus for Robust Air and Water Stability (Angew.) Tj ETQq $1~1$	0.784314	4 rgBT /Ove
60	Fluctuation of Volumetric Displacement in a Double Cell Vane Motor., 2019,,.		0
61	Strain Balanced Selfâ€Supporting Singleâ€Crystalline LiNbO 3 Thin Films for Flexible Electronics. Advanced Electronic Materials, 0, , 2100986.	5.1	O
62	Topochemical Synthesis of Copper Phosphide Nanoribbons for Flexible Optoelectronic Memristors (Adv. Funct. Mater. 14/2022). Advanced Functional Materials, 2022, 32, .	14.9	0