Barbara Geering

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1056617/publications.pdf

Version: 2024-02-01

22 papers 1,612 citations

16 h-index 713466 21 g-index

22 all docs 22 docs citations

times ranked

22

2963 citing authors

#	Article	IF	CITATIONS
1	Ligand-dependent kinase activity of MERTK drives efferocytosis in human iPSC-derived macrophages. Cell Death and Disease, 2021, 12, 538.	6.3	10
2	Large-Scale Production of Human iPSC-Derived Macrophages for Drug Screening. International Journal of Molecular Sciences, 2020, 21, 4808.	4.1	62
3	Sensing and responding to allergic response cytokines through a genetically encoded circuit. Nature Communications, 2017, 8, 1101.	12.8	25
4	Human wholeâ€blood culture system for ex vivo characterization of designerâ€cell function. Biotechnology and Bioengineering, 2016, 113, 588-597.	3.3	10
5	RhoH is a negative regulator of eosinophilopoiesis. Cell Death and Differentiation, 2016, 23, 1961-1972.	11.2	18
6	Identification of Novel Death-Associated Protein Kinase 2 Interaction Partners by Proteomic Screening Coupled with Bimolecular Fluorescence Complementation. Molecular and Cellular Biology, 2016, 36, 132-143.	2.3	11
7	Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Science Translational Medicine, 2015, 7, 318ra201.	12.4	115
8	Death-associated protein kinase 2: Regulator of apoptosis, autophagy and inflammation. International Journal of Biochemistry and Cell Biology, 2015, 65, 151-154.	2.8	31
9	Synthetic immunology: modulating the human immune system. Trends in Biotechnology, 2015, 33, 65-79.	9.3	41
10	A designer cell-based histamine-specific human allergy profiler. Nature Communications, 2014, 5, 4408.	12.8	56
11	Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends in Immunology, 2013, 34, 398-409.	6.8	218
12	DAPK2 positively regulates motility of neutrophils and eosinophils in response to intermediary chemoattractants. Journal of Leukocyte Biology, 2013, 95, 293-303.	3.3	19
13	A novel signaling pathway in TNFα-induced neutrophil apoptosis. Cell Cycle, 2011, 10, 2821-2822.	2.6	13
14	Protein overexpression following lentiviral infection of primary mature neutrophils is due to pseudotransduction. Journal of Immunological Methods, 2011, 373, 209-218.	1.4	10
15	A novel TNFR1-triggered apoptosis pathway mediated by class IA PI3Ks in neutrophils. Blood, 2011, 117, 5953-5962.	1.4	76
16	Lysosomal degradation of RhoH protein upon antigen receptor activation in T but not B cells. European Journal of Immunology, 2010, 40, 525-529.	2.9	18
17	Involvement of Death-Associated Protein Kinases In DNA Damage Responses of B-ALL Cells Blood, 2010, 116, 3369-3369.	1.4	0
18	Regulation of phosphoinositide 3-kinase expression in health and disease. Trends in Biochemical Sciences, 2009, 34, 115-127.	7.5	190

#	Article	IF	CITATION
19	DIFFERENT PATTERNS OF SIGLEC-9-MEDIATED NEUTROPHIL DEATH RESPONSES IN SEPTIC SHOCK. Shock, 2009, 32, 386-392.	2.1	23
20	Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7809-7814.	7.1	206
21	Signalling by PI3K isoforms: insights from gene-targeted mice. Trends in Biochemical Sciences, 2005, 30, 194-204.	7.5	403
22	Quantification of Gel-separated Proteins and Their Phosphorylation Sites by LC-MS Using Unlabeled Internal Standards. Molecular and Cellular Proteomics, 2005, 4, 1038-1051.	3.8	57