Yoshiyuki Rikitake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1056559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Depletion of Foxp3+ regulatory T cells augments CD4+ T cell immune responses in atherosclerosis-prone hypercholesterolemic mice. Heliyon, 2022, 8, e09981.	3.2	2
2	The apelin/APJ system in the regulation of vascular tone: friend or foe?. Journal of Biochemistry, 2021, 169, 383-386.	1.7	14
3	Chondroitin Sulfate <i>N</i> -acetylgalactosaminyltransferase-2 Impacts Foam Cell Formation and Atherosclerosis by Altering Macrophage Glycosaminoglycan Chain. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1076-1091.	2.4	9
4	Mitochondrial DNA mutations are involved in the acquisition of cisplatin resistance in human lung cancer A549 cells. Oncology Reports, 2021, 47, .	2.6	6
5	Recent Advances on the Role and Therapeutic Potential of Regulatory T Cells in Atherosclerosis. Journal of Clinical Medicine, 2021, 10, 5907.	2.4	5
6	Cytotoxic T Lymphocyte-Associated Antigen-4 Protects Against Angiotensin II-Induced Kidney Injury in Mice. Circulation Reports, 2020, 2, 339-342.	1.0	1
7	Safety of Ramucirumab Regimen Without H1-antihistamine Premedication in Patients With Solid Cancers. In Vivo, 2020, 34, 3489-3493.	1.3	2
8	Efficacy and safety of levetiracetam in Japanese epilepsy patients: A retrospective cohort study. Journal of Clinical Pharmacy and Therapeutics, 2019, 44, 912-923.	1.5	4
9	CTLA-4 Protects against Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice. Scientific Reports, 2019, 9, 8065.	3.3	20
10	Inhibitory Effects of Sodium Alginate on Hepatic Steatosis in Mice Induced by a Methionine- and Choline-deficient Diet. Marine Drugs, 2019, 17, 104.	4.6	11
11	A novel in vitro co-culture model to examine contact formation between astrocytic processes and cerebral vessels. Experimental Cell Research, 2019, 374, 333-341.	2.6	4
12	Afadin Facilitates Vascular Endothelial Growth Factor–Induced Network Formation and Migration of Vascular Endothelial Cells by Inactivating Rho-Associated Kinase Through ArhGAP29. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1159-1169.	2.4	12
13	CD44v-dependent upregulation of xCT is involved in the acquisition of cisplatin-resistance in human lung cancer A549†cells. Biochemical and Biophysical Research Communications, 2018, 507, 426-432.	2.1	24
14	Involvement of aquaporinâ€4 in lamininâ€enhanced process formation of mouse astrocytes in 2D culture: Roles of dystroglycan and αâ€syntrophin in aquaporinâ€4 expression. Journal of Neurochemistry, 2018, 147, 495-513.	3.9	22
15	Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer, 2018, 18, 47.	2.6	200
16	Interaction of FAM5C with UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1): Implication of N -glycosylation in FAM5C secretion. Biochemical and Biophysical Research Communications, 2017, 486, 811-816.	2.1	2
17	Necl-4 enhances the PLCγ–c-Raf–MEK–ERK pathway without affecting internalization of VEGFR2. Biochemical and Biophysical Research Communications, 2017, 490, 169-175.	2.1	7
18	Ultraviolet B Exposure Inhibits Angiotensin II–Induced Abdominal Aortic Aneurysm Formation in Mice by Expanding CD4 ⁺ Foxp3 ⁺ Regulatory T Cells. Journal of the American Heart Association, 2017, 6, .	3.7	14

Υοςηιγικι *Rikitake*

#	Article	IF	CITATIONS
19	Dynamic expression of nectins in enamel organs of mouse incisors. Journal of Oral Biosciences, 2017, 59, 172-178.	2.2	1
20	Preventative Effects of Sodium Alginate on Indomethacin-induced Small-intestinal Injury in Mice. International Journal of Medical Sciences, 2016, 13, 653-663.	2.5	27
21	Downâ€regulation of hepatic CYP3A1 expression in a rat model of indomethacinâ€induced small intestinal ulcers. Biopharmaceutics and Drug Disposition, 2016, 37, 522-532.	1.9	3
22	Localization of nectin-2l̂´at perivascular astrocytic endfoot processes and degeneration of astrocytes and neurons in nectin-2 knockout mouse brain. Brain Research, 2016, 1649, 90-101.	2.2	23
23	Nectinâ€∃ spots as a novel adhesion apparatus that tethers mitral cell lateral dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb. Journal of Comparative Neurology, 2015, 523, 1824-1839.	1.6	9
24	The Cell Adhesion Molecule Necl-4/CADM4 Serves as a Novel Regulator for Contact Inhibition of Cell Movement and Proliferation. PLoS ONE, 2015, 10, e0124259.	2.5	24
25	Nectins and Nectin-Like Molecules in Development and Disease. Current Topics in Developmental Biology, 2015, 112, 197-231.	2.2	102
26	Nectin-1 spots regulate the branching of olfactory mitral cell dendrites. Molecular and Cellular Neurosciences, 2015, 68, 143-150.	2.2	8
27	sâ€Afadin binds more preferentially to the cell adhesion molecules nectins than lâ€afadin. Genes To Cells, 2014, 19, 853-863.	1.2	10
28	Family with Sequence Similarity 5, Member C (FAM5C) Increases Leukocyte Adhesion Molecules in Vascular Endothelial Cells: Implication in Vascular Inflammation. PLoS ONE, 2014, 9, e107236.	2.5	20
29	Nectin-Like Molecule-5 Regulates Intimal Thickening After Carotid Artery Ligation in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1206-1211.	2.4	4
30	Necl-5/Poliovirus Receptor Interacts With VEGFR2 and Regulates VEGF-Induced Angiogenesis. Circulation Research, 2012, 110, 716-726.	4.5	42
31	FGD5 Mediates Proangiogenic Action of Vascular Endothelial Growth Factor in Human Vascular Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 988-996.	2.4	53
32	Orally Administered Eicosapentaenoic Acid Induces Rapid Regression of Atherosclerosis Via Modulating the Phenotype of Dendritic Cells in LDL Receptor-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1963-1972.	2.4	74
33	Role of Afadin in Vascular Endothelial Growth Factor– and Sphingosine 1-Phosphate–Induced Angiogenesis. Circulation Research, 2010, 106, 1731-1742.	4.5	74
34	Deficiency of Nectin-2 Leads to Cardiac Fibrosis and Dysfunction Under Chronic Pressure Overload. Hypertension, 2009, 54, 825-831.	2.7	40
35	Regulation by Afadin of Cyclical Activation and Inactivation of Rap1, Rac1, and RhoA Small G Proteins at Leading Edges of Moving NIH3T3 Cells. Journal of Biological Chemistry, 2009, 284, 24595-24609.	3.4	42
36	Vascular endothelial cell-derived endothelin-1 mediates vascular inflammation and neointima formation following blood flow cessation. Cardiovascular Research, 2009, 82, 143-151.	3.8	76

Υοςηιγικι **Γικιτ**ακε

#	Article	IF	CITATIONS
37	The Immunoglobulin-Like Cell Adhesion Molecule Nectin and Its Associated Protein Afadin. Annual Review of Cell and Developmental Biology, 2008, 24, 309-342.	9.4	310
38	Decreased Perivascular Fibrosis but Not Cardiac Hypertrophy in ROCK1 +/â^ Haploinsufficient Mice. Circulation, 2005, 112, 2959-2965.	1.6	195
39	Rho GTPases, Statins, and Nitric Oxide. Circulation Research, 2005, 97, 1232-1235.	4.5	434
40	Rho-Kinase Mediates Hyperglycemia-Induced Plasminogen Activator Inhibitor-1 Expression in Vascular Endothelial Cells. Circulation, 2005, 111, 3261-3268.	1.6	109
41	Inhibition of Rho Kinase (ROCK) Leads to Increased Cerebral Blood Flow and Stroke Protection. Stroke, 2005, 36, 2251-2257.	2.0	351