Fanor Mondragon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10564732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and Computational Analysis of the Formation of Surface Oxygen Functional Groups during Iron Catalyzed Char Gasification with CO2. Combustion Science and Technology, 2018, 190, 687-706.	2.3	10
2	Activation of CO2 on Ni/La2O3: non-isothermal kinetic study on the basis of thermogravimetric studies. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 179-193.	1.7	9
3	Effect of calcium on gasification of carbonaceous materials with CO2: A DFT study. Fuel, 2013, 114, 199-205.	6.4	30
4	Activation energies and structural changes in carbon nanotubes during different acid treatments. Journal of Thermal Analysis and Calorimetry, 2013, 114, 597-602.	3.6	14
5	Chemical characterization of soot precursors and soot particles produced in hexane and diesel surrogates using an inverse diffusion flame burner. Fuel, 2013, 104, 681-690.	6.4	47
6	Influence of palm oil biodiesel on the chemical and morphological characteristics of particulate matter emitted by a diesel engine. Atmospheric Environment, 2012, 62, 220-227.	4.1	66
7	Chemical Characteristics of the Soot Produced in a High-Speed Direct Injection Engine Operated with Diesel/Biodiesel Blends. Combustion Science and Technology, 2012, 184, 1179-1190.	2.3	12
8	Variations of the Soot Precursors Chemical Composition Induced by Ethanol Addition to Fuel. Energy & Fuels, 2012, 26, 6602-6611.	5.1	12
9	Production and utilization performance of a glycerol derived additive for diesel engines. Fuel, 2012, 92, 130-136.	6.4	40
10	Variations in the chemical composition and morphology of soot induced by the unsaturation degree of biodiesel and a biodiesel blend. Combustion and Flame, 2012, 159, 1100-1108.	5.2	104
11	Mechanisms of Carbon Gasification Reactions Using Electronic Structure Methods. , 2011, , 445-501.		1
12	High stability of Ce-promoted Ni/Mg–Al catalysts derived from hydrotalcites in dry reforming of methane. Fuel, 2010, 89, 592-603.	6.4	214
13	Production of hydrogen and MWCNTs by methane decomposition over catalysts originated from LaNiO3 perovskite. Catalysis Today, 2010, 149, 365-371.	4.4	55
14	Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels. Combustion and Flame, 2010, 157, 33-42.	5.2	104
15	Influence of Pr and Ce in dry methane reforming catalysts produced from La1â^'xAxNiO3â^'î´ perovskites. Applied Catalysis A: General, 2009, 369, 97-103.	4.3	141
16	Thermodynamic evaluation of steam gasification mechanisms of carbonaceous materials. Carbon, 2009, 47, 3010-3018.	10.3	47
17	Heterogeneous CO ₂ Evolution from Oxidation of Aromatic Carbon-Based Materials. Journal of Physical Chemistry A, 2009, 113, 8415-8420.	2.5	34
18	Effect of MgO addition on the basicity of Ni/ZrO2 and on its catalytic activity in carbon dioxide reforming of methane. Catalysis Communications, 2009, 11, 240-246.	3.3	128

Fanor Mondragon

#	Article	IF	CITATIONS
19	Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor—Characterization of carbon deposition. Catalysis Today, 2008, 133-135, 200-209.	4.4	89
20	CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides. Catalysis Today, 2008, 133-135, 357-366.	4.4	125
21	Dry reforming of methane over LaNi1â^'yByO3±δ (B=Mg, Co) perovskites used as catalyst precursor. Applied Catalysis A: General, 2008, 334, 251-258.	4.3	204
22	Low-Temperature Catalytic Adsorption of NO on Activated Carbon Materials. Langmuir, 2007, 23, 12131-12137.	3.5	35
23	Role of the Epoxy Group in the Heterogeneous CO2Evolution in Carbon Oxidation Reactions. Journal of Physical Chemistry C, 2007, 111, 612-617.	3.1	45
24	Surface Complexes Formed during Simultaneous Catalytic Adsorption of NO and SO2 on Activated Carbons at Low Temperatures. Journal of Physical Chemistry C, 2007, 111, 1417-1423.	3.1	34
25	Effect of ethanol on the chemical structure of the soot extractable material of an ethylene inverse diffusion flame. Combustion and Flame, 2007, 151, 235-244.	5.2	14
26	Mechanisms of NH3 formation during the reaction of H2 with nitrogen containing carbonaceous materials. Carbon, 2007, 45, 2273-2279.	10.3	44
27	Average structural analysis of the extractable material of young soot gathered in an ethylene inverse diffusion flame. Fuel, 2007, 86, 1908-1917.	6.4	34
28	CO2 reforming of CH4 over La–Ni based perovskite precursors. Applied Catalysis A: General, 2006, 311, 164-171.	4.3	204
29	FT-IR and 1H NMR characterization of the products of an ethylene inverse diffusion flame. Combustion and Flame, 2006, 146, 52-62.	5.2	91
30	Transition-metal atom adsorption on anFsdefect site of MgO (100) and the interaction with a hydrogen atom. Physical Review B, 2006, 73, .	3.2	11
31	Desorption activation energy distribution function of nitric oxide chemisorbed on carbonaceous materials at 373 K. Carbon, 2005, 43, 1445-1452.	10.3	6
32	Mechanisms for methane and ethane formation in the reaction of hydrogen with carbonaceous materials. Carbon, 2005, 43, 1820-1827.	10.3	36
33	CO2 reforming of methane over LaNiO3 as precursor material. Catalysis Today, 2005, 107-108, 474-480.	4.4	77
34	Experimental characterization and molecular simulation of nitrogen complexes formed upon NO–char reaction at 270 °C in the presence of H2O and O2. Carbon, 2004, 42, 1507-1515.	10.3	41
35	A DFT Study of Interaction of Carbon Monoxide with Carbonaceous Materials. Journal of Physical Chemistry B, 2004, 108, 1003-1008.	2.6	74
36	CO2 adsorption on carbonaceous surfaces: a combined experimental and theoretical study. Carbon, 2003, 41, 29-39.	10.3	111

FANOR MONDRAGON

#	Article	IF	CITATIONS
37	First-Principles Kinetics of CO Desorption from Oxygen Species on Carbonaceous Surface. Journal of Physical Chemistry A, 2002, 106, 4236-4239.	2.5	99
38	Formation of CO precursors during char gasification with O2, CO2 and H2O. Fuel Processing Technology, 2002, 77-78, 125-130.	7.2	62
39	Kinetics of nitric oxide desorption from carbonaceous surfaces. Fuel Processing Technology, 2002, 77-78, 453-458.	7.2	19
40	Adsorption on carbonaceous surfaces: cost-effective computational strategies for quantum chemistry studies of aromatic systems. Carbon, 2002, 40, 1863-1872.	10.3	28
41	CO Desorption from Oxygen Species on Carbonaceous Surface:Â 1. Effects of the Local Structure of the Active Site and the Surface Coverage. Journal of Physical Chemistry A, 2001, 105, 6757-6764.	2.5	120
42	The use of differential scanning calorimetry to identify coals susceptible to spontaneous combustion. Thermochimica Acta, 1999, 336, 41-46.	2.7	56
43	Reactivity of coal gasification with steam and CO2. Fuel, 1998, 77, 1831-1839.	6.4	227
44	Role of Glass Transitions in Determining Enthalpies of Air Oxidation in North Dakota Lignite. Energy & Fuels, 1994, 8, 1002-1003.	5.1	4