
Yoshio Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10564565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solid-source vapor growth and optoelectronic properties of arsenic-based layered group-IV monopnictides. CrystEngComm, 2022, 24, 4085-4092.	2.6	2
2	Microwave plasma-induced growth of vertical graphene from fullerene soot. Carbon, 2021, 172, 26-30.	10.3	18
3	Solid-source vapor growth of rectangular germanium arsenide (GeAs) film. Materials Letters, 2021, 283, 128748.	2.6	4
4	Photocatalytic and Photoelectrochemical Hydrogen Evolution from Water over Cu ₂ Sn _{<i>x</i>} Ge _{1–<i>x</i>} S ₃ Particles. Journal of the American Chemical Society, 2021, 143, 5698-5708.	13.7	33
5	Demonstration of electronic devices in graphitic carbon nitride crystalline film. AIP Advances, 2021, 11,	1.3	5
6	Nitrogen-doped graphene nanosheet-double-walled carbon nanotube hybrid nanostructures for high-performance supercapacitors. FlatChem, 2021, 29, 100292.	5.6	10
7	Electrical Properties in Ta2NiSe5 Film and van der Waals Heterojunction. Coatings, 2021, 11, 1485.	2.6	0
8	Chemical Vapor Deposition of Boronâ€Incorporated Graphitic Carbon Nitride Film for Carbonâ€Based Wide Bandgap Semiconductor Materials. Physica Status Solidi (B): Basic Research, 2020, 257, 1900375.	1.5	11
9	Electronic transport and device application of crystalline graphitic carbon nitride film. Materials Letters, 2020, 281, 128600.	2.6	9
10	Photoluminescence of Layered Semiconductor Materials for Emission-Color Conversion of Blue Micro Light-Emitting Diode (µLED). Coatings, 2020, 10, 985.	2.6	1
11	Facile synthesis of graphene sheets intercalated by carbon spheres for high-performance supercapacitor electrodes. Carbon, 2020, 167, 11-18.	10.3	18
12	Graphite Whiskers Derived from Waste Coffee Grounds Treated at High Temperature. Global Challenges, 2019, 3, 1800107.	3.6	6
13	Graphene nanosheet-grafted double-walled carbon nanotube hybrid nanostructures by two-step chemical vapor deposition and their application for ethanol detection. Scientific Reports, 2019, 9, 7871.	3.3	12
14	Thermal chemical vapor deposition and luminescence property of graphitic carbon nitride film for carbon-based semiconductor systems. Japanese Journal of Applied Physics, 2019, 58, 010907.	1.5	19
15	Formation of graphitic carbon nitride and boron carbon nitride film on sapphire substrate. Japanese Journal of Applied Physics, 2018, 57, 02CB09.	1.5	12
16	Vertical Graphene for Biosensors. , 2018, , 37-56.		3
17	Structural evolution of hydrothermal carbon spheres induced by high temperatures and their electrical properties under compression. Carbon, 2017, 121, 426-433.	10.3	25
18	Electrically Triggered Actuation of Plasticized Thermoplastic Polyurethane Gels. Macromolecular Materials and Engineering, 2016, 301, 864-869.	3.6	13

#	Article	IF	CITATIONS
19	Effect of ultrasonically generated water vapor treatment on the Cu2ZnSnS4/CdS heterojunction-based photovoltaic cells. Solar Energy Materials and Solar Cells, 2016, 157, 765-776.	6.2	9
20	Preparation and characterization of novel transparent plasticized poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Polymer Physics, 2015, 53, 829-832.) Tf 50 707 2.1	Td (terephth 3
21	Influence of Ge composition in the Cu2Sn1â^'Ge S3 thin-film photovoltaic absorber prepared by sulfurization of laminated metallic precursor. Solar Energy Materials and Solar Cells, 2015, 140, 312-319.	6.2	28
22	Field emission property of ZnO nanowires prepared by ultrasonic spray pyrolysis. Superlattices and Microstructures, 2015, 84, 144-153.	3.1	8
23	Nanocarbons from rice husk by microwave plasma irradiation: From graphene and carbon nanotubes to graphenated carbon nanotube hybrids. Carbon, 2015, 94, 479-484.	10.3	81
24	Microwave plasma-induced graphene-sheet fibers from waste coffee grounds. Journal of Materials Chemistry A, 2015, 3, 14545-14549.	10.3	22
25	High-temperature-induced growth of graphite whiskers from fullerene waste soot. Carbon, 2015, 90, 154-159.	10.3	11
26	Synthesis of a cuprite thin film by oxidation of a Cu metal precursor utilizing ultrasonically generated water vapor. Thin Solid Films, 2014, 556, 211-215.	1.8	3
27	Structure changes of MPECVD-grown carbon nanosheets under high-temperature treatment. Carbon, 2014, 68, 360-368.	10.3	16
28	Formation of polyketone particle structure by hexafluoroisopropanol solvent evaporation and effects of plasticizer addition. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 887-892.	2.1	6
29	Synthesis of carbon nanosheets from Kapton polyimide by microwave plasma treatment. Carbon, 2014, 72, 421-424.	10.3	20
30	Electric-Field-Induced Actuation of Poly(vinyl alcohol) Microfibers. Journal of Physical Chemistry C, 2012, 116, 23236-23242.	3.1	10
31	Oxygen in Ge crystals grown by the B2O3 encapsulated Czochralski method. Physica B: Condensed Matter, 2012, 407, 2932-2934.	2.7	5
32	Czochralski growth techniques of germanium crystals grown from a melt covered partially or fully by liquid B2O3. Journal of Crystal Growth, 2012, 360, 47-51.	1.5	4
33	A Cadmium-Free Cu ₂ ZnSnS ₄ /ZnO Hetrojunction Solar Cell Prepared by Practicable Processes. Japanese Journal of Applied Physics, 2011, 50, 032301.	1.5	27
34	Behaviour of oxygen-related thermal donors in Ge crystals Czochralski-grown from the melt covered fully by B ₂ O ₃ . Journal of Physics: Conference Series, 2011, 281, 012011.	0.4	4
35	Cu ₂ ZnSnS ₄ Thin Film Solar Cells Utilizing Sulfurization of Metallic Precursor Prepared by Simultaneous Sputtering of Metal Targets. Japanese Journal of Applied Physics, 2011, 50, 01BG09.	1.5	39
36	Cu ₂ ZnSnS ₄ Thin Film Solar Cells Utilizing Sulfurization of Metallic Precursor Prepared by Simultaneous Sputtering of Metal Targets. Japanese Journal of Applied Physics, 2011, 50, 01BG09.	1.5	30

Уозніо Назнімото

#	Article	IF	CITATIONS
37	A Cadmium-Free Cu ₂ ZnSnS ₄ /ZnO Hetrojunction Solar Cell Prepared by Practicable Processes. Japanese Journal of Applied Physics, 2011, 50, 032301.	1.5	20
38	Synthesis of optical quality ZnO nanowires utilizing ultrasonic spray pyrolysis. Journal of Materials Science: Materials in Electronics, 2009, 20, 341-345.	2.2	16
39	Fine Control of Nitrogen Content in N-doped Titania Photocatalysts Prepared from Layered Titania/Isostearate Nanocomposites for High Visible-Light Photocatalytic Activity. Topics in Catalysis, 2009, 52, 1584-1591.	2.8	7
40	Position-selective growth of ZnO nanowires by ultrasonic spray pyrolysis. Journal of Crystal Growth, 2009, 311, 4499-4504.	1.5	23
41	Photoluminescence Properties and Morphologies of Submicron-Sized ZnO Crystals Prepared by Ultrasonic Spray Pyrolysis. Japanese Journal of Applied Physics, 2008, 47, 541.	1.5	14
42	Growth of ZnO Submicron Single-Crystalline Platelets, Wires, and Rods by Ultrasonic Spray Pyrolysis. Japanese Journal of Applied Physics, 2007, 46, 440-448.	1.5	42
43	Control of Compositional Profile and Crystallinity of CuIn1-xAlxS2Thin Films. Japanese Journal of Applied Physics, 2006, 45, 8592-8596.	1.5	4
44	Growth of 1-µm-thick Continuous β-FeSi2Films on Abraded p+-Si(001) Substrates by RF-Magnetron Sputtering. Japanese Journal of Applied Physics, 2003, 42, 5490-5493.	1.5	21
45	Solar cells with Cu(In1â^xCax)S2 thin films prepared by sulfurization. Solar Energy Materials and Solar Cells, 2001, 67, 225-230.	6.2	27
46	Cu(In1-xGax)S2Thin Films Prepared by Sulfurization of Precursors Consisting of Metallic and Gallium Sulfide Layers. Japanese Journal of Applied Physics, 1998, 37, 6530-6534.	1.5	15
47	Band alignment at CdS/CuInS2 heterojunction. Applied Physics Letters, 1995, 67, 980-982.	3.3	63