Jan Stöhr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10563578/publications.pdf

Version: 2024-02-01

331670 477307 2,514 29 21 29 citations h-index g-index papers 29 29 29 3582 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Short peptides self-assemble to produce catalytic amyloids. Nature Chemistry, 2014, 6, 303-309.	13.6	510
2	Purified and synthetic Alzheimerâ \in [™] s amyloid beta (Aβ) prions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11025-11030.	7.1	327
3	Serial propagation of distinct strains of $A\hat{l}^2$ prions from Alzheimerâ \in [™] s disease patients. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10323-10328.	7.1	247
4	Propagation of prions causing synucleinopathies in cultured cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4949-58.	7.1	191
5	Distinct synthetic $\hat{Al^2}$ prion strains producing different amyloid deposits in bigenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10329-10334.	7.1	140
6	Mechanisms of prion protein assembly into amyloid. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2409-2414.	7.1	127
7	Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E782-E791.	7.1	105
8	Zinc-binding structure of a catalytic amyloid from solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6191-6196.	7.1	102
9	Aβ and tau prion-like activities decline with longevity in the Alzheimer's disease human brain. Science Translational Medicine, 2019, 11, .	12.4	96
10	Structural changes of membrane-anchored native PrP ^C . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10815-10819.	7.1	83
11	Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study. Journal of the American Chemical Society, 2016, 138, 9840-9852.	13.7	79
12	Spontaneous generation of anchorless prions in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21223-21228.	7.1	68
13	A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells. Nature Chemistry, 2017, 9, 874-881.	13.6	67
14	Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3498-3503.	7.1	65
15	Assembly of natural and recombinant prion protein into fibrils. Biological Chemistry, 2005, 386, 569-580.	2.5	59
16	Protease-Resistant Prions Selectively Decrease Shadoo Protein. PLoS Pathogens, 2011, 7, e1002382.	4.7	39
17	Mechanism of Scrapie Prion Precipitation with Phosphotungstate Anions. ACS Chemical Biology, 2015, 10, 1269-1277.	3.4	33
18	Prion Protein—Antibody Complexes Characterized by Chromatography-Coupled Small-Angle X-Ray Scattering. Biophysical Journal, 2015, 109, 793-805.	0.5	33

#	Article	IF	CITATIONS
19	A longâ€lived Aβ oligomer resistant to fibrillization. Biopolymers, 2018, 109, e23096.	2.4	26
20	Structural Studies of Truncated Forms of the Prion Protein PrP. Biophysical Journal, 2015, 108, 1548-1554.	0.5	25
21	Degradation of Fungal Prion HET-s(218-289) Induces Formation ofÂa Generic Amyloid Fold. Biophysical Journal, 2012, 102, 2339-2344.	0.5	24
22	Spontaneous and BSE-prion-seeded amyloid formation of full length recombinant bovine prion protein. Biochemical and Biophysical Research Communications, 2008, 373, 493-497.	2.1	19
23	Seeded Fibrillation as Molecular Basis of the Species Barrier in Human Prion Diseases. PLoS ONE, 2013, 8, e72623.	2.5	18
24	Molecular Interactions between Prions as Seeds and Recombinant Prion Proteins as Substrates Resemble the Biological Interspecies Barrier In Vitro. PLoS ONE, 2010, 5, e14283.	2.5	10
25	Aggregation and Amyloid Fibril Formation of the Prion Protein Is Accelerated in the Presence of Glycogen. Rejuvenation Research, 2008, 11 , 365 - 369 .	1.8	6
26	In vitro conversion and seeded fibrillization of posttranslationally modified prion protein. Biological Chemistry, 2011, 392, 415-21.	2.5	6
27	Prion Protein Aggregation and FibrillogenesisIn Vitro. Sub-Cellular Biochemistry, 2012, 65, 91-108.	2.4	5
28	Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure. Prion, 2015, 9, 333-338.	1.8	2
29	Structural Biology of PrP Prions. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024455.	6.2	2