Osbaldo Resendis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/105603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological Network Is Disrupted in Severe COVID-19. Frontiers in Physiology, 2022, 13, 848172.	2.8	7
2	Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymerâ€based precipitation and size exclusion chromatography. Journal of Extracellular Vesicles, 2021, 10, e12087.	12.2	55
3	Sex Differences in the Physiological Network of Healthy Young Subjects. Frontiers in Physiology, 2021, 12, 678507.	2.8	9
4	Transcriptional and Microenvironmental Landscape of Macrophage Transition in Cancer: A Boolean Analysis. Frontiers in Immunology, 2021, 12, 642842.	4.8	20
5	On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Frontiers in Immunology, 2021, 12, 705646.	4.8	9
6	Stochastic Analysis of the RT-PCR Process in Single-Cell RNA-Seq. Mathematics, 2021, 9, 2515.	2.2	1
7	MicroRNAs Regulate Metabolic Phenotypes During Multicellular Tumor Spheroids Progression. Frontiers in Oncology, 2020, 10, 582396.	2.8	3
8	Analysis of Epithelial-Mesenchymal Transition Metabolism Identifies Possible Cancer Biomarkers Useful in Diverse Genetic Backgrounds. Frontiers in Oncology, 2020, 10, 1309.	2.8	8
9	Unveiling functional heterogeneity in breast cancer multicellular tumor spheroids through single-cell RNA-seq. Scientific Reports, 2020, 10, 12728.	3.3	30
10	Uncovering the Dynamic Mechanisms of the <i>Pseudomonas Aeruginosa</i> Quorum Sensing and Virulence Networks Using Boolean Modelling. IEEE Transactions on Nanobioscience, 2020, 19, 394-402.	3.3	6
11	MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 2020, 38, 272-276.	17.5	314
12	MICOM: Metagenome-Scale Modeling To Infer Metabolic Interactions in the Gut Microbiota. MSystems, 2020, 5, .	3.8	126
13	Progressive Shifts in the Gut Microbiome Reflect Prediabetes and Diabetes Development in a Treatment-Naive Mexican Cohort. Frontiers in Endocrinology, 2020, 11, 602326.	3.5	13
14	Genes Involved in the Transcriptional Regulation of Pluripotency Are Expressed in Malignant Tumors of the Uterine Cervix and Can Induce Tumorigenic Capacity in a Nontumorigenic Cell Line. Stem Cells International, 2019, 2019, 1-14.	2.5	6
15	Synthesis of multi-omic data and community metabolic models reveals insights into the role of hydrogen sulfide in colon cancer. Methods, 2018, 149, 59-68.	3.8	63
16	Distinct microbes, metabolites, and ecologies define the microbiome in deficient and proficient mismatch repair colorectal cancers. Genome Medicine, 2018, 10, 78.	8.2	107
17	Entamoeba histolytica Up-Regulates MicroRNA-643 to Promote Apoptosis by Targeting XIAP in Human Epithelial Colon Cells. Frontiers in Cellular and Infection Microbiology, 2018, 8, 437.	3.9	20
18	System Biology, Metabolomics, and Breast Cancer: Where We Are and What Are the Possible		0

OSBALDO RESENDIS

#	Article	IF	CITATIONS
19	Natural selection drove metabolic specialization of the chromatophore in Paulinella chromatophora. BMC Evolutionary Biology, 2017, 17, 99.	3.2	11
20	"Gestaltomics― Systems Biology Schemes for the Study of Neuropsychiatric Diseases. Frontiers in Physiology, 2017, 8, 286.	2.8	4
21	Editorial: Systems Biology and the Challenge of Deciphering the Metabolic Mechanisms Underlying Cancer. Frontiers in Physiology, 2017, 8, 537.	2.8	2
22	Evolution of Centrality Measurements for the Detection of Essential Proteins in Biological Networks. Frontiers in Physiology, 2016, 7, 375.	2.8	56
23	Host-Microbiome Interaction and Cancer: Potential Application in Precision Medicine. Frontiers in Physiology, 2016, 7, 606.	2.8	40
24	Personalized Prediction of Proliferation Rates and Metabolic Liabilities in Cancer Biopsies. Frontiers in Physiology, 2016, 7, 644.	2.8	16
25	The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome. Scientific Reports, 2016, 6, 28415.	3.3	15
26	Modeling metabolism: A window toward a comprehensive interpretation of networks in cancer. Seminars in Cancer Biology, 2015, 30, 79-87.	9.6	26
27	Criticality, adaptability and early-warning signals in time series in a discrete quasispecies model. Frontiers in Biology, 2013, 8, 247-259.	0.7	6
28	Systems biology of cancer: moving toward the integrative study of the metabolic alterations in cancer cells. Frontiers in Physiology, 2013, 3, 481.	2.8	17
29	Constraint-based Modeling. , 2013, , 494-498.		2
30	Metabolism Nitrogen Fixation. , 2013, , 1275-1279.		1
31	Jacobian Matrix. , 2013, , 1061-1062.		3
32	Hierarchical Structure. , 2013, , 887-888.		1
33	A Roadmap Towards a Systems Biology Description of Bacterial Nitrogen Fixation. Soil Biology, 2013, , 27-51.	0.8	Ο
34	Dynamic Metabolic Networks, k-Cone. , 2013, , 624-629.		1
35	Modules, Identification Methods and Biological Function. , 2013, , 1450-1453.		0
36	Functional Modules, Structural Topology, and Optimal Activity in Metabolic Networks. PLoS Computational Biology, 2012, 8, e1002720.	3.2	34

OSBALDO RESENDIS

#	Article	IF	CITATIONS
37	Systems biology of bacterial nitrogen fixation: High-throughput technology and its integrative description with constraint-based modeling. BMC Systems Biology, 2011, 5, 120.	3.0	43
38	Proteomic patterns of cervical cancer cell lines, a network perspective. BMC Systems Biology, 2011, 5, 96.	3.0	52
39	Modeling Core Metabolism in Cancer Cells: Surveying the Topology Underlying the Warburg Effect. PLoS ONE, 2010, 5, e12383.	2.5	70
40	Filling Kinetic Gaps: Dynamic Modeling of Metabolism Where Detailed Kinetic Information Is Lacking. PLoS ONE, 2009, 4, e4967.	2.5	21
41	Regulation by transcription factors in bacteria: beyond description. FEMS Microbiology Reviews, 2009, 33, 133-151.	8.6	185
42	Metabolic Reconstruction and Modeling of Nitrogen Fixation in Rhizobium etli. PLoS Computational Biology, 2007, 3, e192.	3.2	85
43	Robustness and evolvability in genetic regulatory networks. Journal of Theoretical Biology, 2007, 245, 433-448.	1.7	242
44	Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. BMC Microbiology, 2007, 7, 53.	3.3	59
45	Modular analysis of the transcriptional regulatory network of E. coli. Trends in Genetics, 2005, 21, 16-20.	6.7	99
46	The growth of random networks as a diffusion process. Physica A: Statistical Mechanics and Its Applications, 2004, 342, 551-560.	2.6	0
47	A statistical model of DNA denaturation. Physica A: Statistical Mechanics and Its Applications, 2003, 318, 435-446.	2.6	3
48	A Fokker–Planck framework in the PolyC:PolyG denaturation. Physica A: Statistical Mechanics and Its Applications, 2002, 312, 307-314.	2.6	0