Teppo Hiltunen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1055963/publications.pdf

Version: 2024-02-01

394421 377865 1,337 45 19 34 citations h-index g-index papers 51 51 51 1641 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antibiotic resistance in the wild: an eco-evolutionary perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160039.	4.0	136
2	A newly discovered role of evolution in previously published consumer–resource dynamics. Ecology Letters, 2014, 17, 915-923.	6.4	91
3	Consumer co-evolution as an important component of the eco-evolutionary feedback. Nature Communications, 2014, 5, 5226.	12.8	84
4	Newly isolated <i>Nodularia</i> phage influences cyanobacterial community dynamics. Environmental Microbiology, 2017, 19, 273-286.	3.8	83
5	Ecology determines how low antibiotic concentration impacts community composition and horizontal transfer of resistance genes. Communications Biology, 2018, 1, 35.	4.4	80
6	Predation on Multiple Trophic Levels Shapes the Evolution of Pathogen Virulence. PLoS ONE, 2009, 4, e6761.	2.5	69
7	Availability of prey resources drives evolution of predator–prey interaction. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1625-1633.	2.6	65
8	High Temperature and Bacteriophages Can Indirectly Select for Bacterial Pathogenicity in Environmental Reservoirs. PLoS ONE, 2011, 6, e17651.	2.5	61
9	Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160040.	4.0	39
10	Dual-stressor selection alters eco-evolutionary dynamics in experimental communities. Nature Ecology and Evolution, 2018, 2, 1974-1981.	7.8	38
11	Environmental fluctuations restrict eco-evolutionary dynamics in predator–prey system. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150013.	2.6	36
12	Evolving interactions between diazotrophic cyanobacterium and phage mediate nitrogen release and host competitive ability. Royal Society Open Science, 2016, 3, 160839.	2.4	31
13	Dynamical trade-offs arise from antagonistic coevolution and decrease intraspecific diversity. Nature Communications, 2017, 8, 2059.	12.8	30
14	Conjugation is necessary for a bacterial plasmid to survive under protozoan predation. Biology Letters, 2016, 12, 20150953.	2.3	28
15	Construction and Characterization of Synthetic Bacterial Community for Experimental Ecology and Evolution. Frontiers in Genetics, 2018, 9, 312.	2.3	28
16	Protist predation can select for bacteria with lowered susceptibility to infection by lytic phages. BMC Evolutionary Biology, 2015, 15, 81.	3.2	27
17	Temporal dynamics of a simple community with intraguild predation: an experimental test. Ecology, 2013, 94, 773-779.	3.2	26
18	Evolutionary contribution to coexistence of competitors in microbial food webs. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170415.	2.6	23

#	Article	IF	CITATIONS
19	Mixotrophy and the toxicity of <i>Ochromonas</i> in pelagic food webs. Freshwater Biology, 2012, 57, 2262-2271.	2.4	22
20	Eco-Evolutionary Dynamics in a Three-Species Food Web with Intraguild Predation. Advances in Ecological Research, 2014, 50, 41-73.	2.7	22
21	Competition between a toxic and a non-toxic Microcystis strain under constant and pulsed nitrogen and phosphorus supply. Aquatic Ecology, 2017, 51, 117-130.	1.5	22
22	Repeatable ecological dynamics govern the response of experimental communities to antibiotic pulse perturbation. Nature Ecology and Evolution, 2020, 4, 1385-1394.	7.8	22
23	Pulsed-resource dynamics increase the asymmetry of antagonistic coevolution between a predatory protist and a prey bacterium. Journal of Evolutionary Biology, 2011, 24, 2563-2573.	1.7	21
24	Genomic evolution of bacterial populations under coselection by antibiotics and phage. Molecular Ecology, 2017, 26, 1848-1859.	3.9	19
25	Temporal variability in detritus resource maintains diversity of bacterial communities. Acta Oecologica, 2008, 33, 291-299.	1.1	18
26	Black Queen Evolution and Trophic Interactions Determine Plasmid Survival after the Disruption of the Conjugation Network. MSystems, 2018, 3, .	3.8	18
27	Siderophores as an iron source for picocyanobacteria in deep chlorophyll maximum layers of the oligotrophic ocean. ISME Journal, 2022, 16, 1636-1646.	9.8	18
28	Predation and resource fluctuations drive eco-evolutionary dynamics of a bacterial community. Acta Oecologica, 2012, 38, 77-83.	1.1	17
29	Predator coevolution and prey trait variability determine species coexistence. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190245.	2.6	17
30	Co-evolution as an important component explaining microbial predator-prey interaction. Journal of Theoretical Biology, 2020, 486, 110095.	1.7	15
31	Rapid evolutionary adaptation to elevated salt concentrations in pathogenic freshwater bacteria <i>Serratia marcescens</i> . Ecology and Evolution, 2014, 4, 3901-3908.	1.9	14
32	The role of stressors in altering ecoâ€evolutionary dynamics. Functional Ecology, 2019, 33, 73-83.	3.6	13
33	The spread of the plasmid RP4 in a synthetic bacterial community is dependent on the particular donor strain. FEMS Microbiology Ecology, 2021, 97, .	2.7	13
34	Scoping the effectiveness and evolutionary obstacles in using plasmid-dependent phages to fight antibiotic resistance. Future Microbiology, 2016, 11, 999-1009.	2.0	12
35	Conjugative ESBL plasmids differ in their potential to rescue susceptible bacteria via horizontal gene transfer in lethal antibiotic concentrations. Journal of Antibiotics, 2017, 70, 805-808.	2.0	12
36	Interactions between environmental variability and immigration rate control patterns of species diversity. Ecological Modelling, 2006, 194, 125-131.	2.5	11

TEPPO HILTUNEN

#	Article	IF	CITATIONS
37	Effect of resource availability on evolution of virulence and competition in an environmentally transmitted pathogen. FEMS Microbiology Ecology, 2018, 94, .	2.7	11
38	A high-throughput approach to the culture-based estimation of plasmid transfer rates. Plasmid, 2019, 101, 28-34.	1.4	11
39	The relative importance of competition and predation in environment characterized by resource pulses – an experimental test with a microbial community. BMC Ecology, 2013, 13, 29.	3.0	9
40	Evolution in interacting species alters predator life-history traits, behaviour and morphology in experimental microbial communities. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200652.	2.6	9
41	Effects of phenotypic variation on consumer coexistence and prey community structure. Ecology Letters, 2022, 25, 307-319.	6.4	5
42	Strong selective environments determine evolutionary outcome in time-dependent fitness seascapes. Evolution Letters, 2022, 6, 266-279.	3.3	4
43	High variability of plasmid uptake rates in Escherichia coli isolated from sewage and river sediments. PLoS ONE, 2020, 15, e0232130.	2.5	2
44	Frequency of virusâ€resistant hosts determines experimental community dynamics. Ecology, 2019, 100, e02554.	3.2	1
45	Effect of mutation supply on population dynamics and trait evolution in an experimental microbial community. Ecology Letters, 2022, 25, 355-365.	6.4	1