Günter Zimmermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10554775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir. Journal of Structural Geology, 2009, 31, 1174-1182.	2.3	197
2	A grain based modeling study of mineralogical factors affecting strength, elastic behavior and micro fracture development during compression tests in granites. Engineering Fracture Mechanics, 2015, 147, 261-275.	4.3	120
3	Hot water generation for oil sands processing from enhanced geothermal systems: Process simulation for different hydraulic fracturing scenarios. Applied Energy, 2014, 113, 524-547.	10.1	112
4	Hydraulic stimulation of a deep sandstone reservoir to develop an Enhanced Geothermal System: Laboratory and field experiments. Geothermics, 2010, 39, 70-77.	3.4	107
5	Cyclic waterfrac stimulation to develop an Enhanced Geothermal System (EGS)—Conceptual design and experimental results. Geothermics, 2010, 39, 59-69.	3.4	103
6	Hydraulic fracture monitoring in hard rock at 410Âm depth with an advanced fluid-injection protocol and extensive sensor array. Geophysical Journal International, 2017, 208, 790-813.	2.4	98
7	How to Reduce Fluid-Injection-Induced Seismicity. Rock Mechanics and Rock Engineering, 2019, 52, 475-493.	5.4	97
8	Numerical Investigation on Stress Shadowing in Fluid Injection-Induced Fracture Propagation in Naturally Fractured Geothermal Reservoirs. Rock Mechanics and Rock Engineering, 2015, 48, 1439-1454.	5.4	96
9	First field application of cyclic soft stimulation at the Pohang Enhanced Geothermal System site in Korea. Geophysical Journal International, 2019, 217, 926-949.	2.4	90
10	Cyclic hydraulic fracturing of pocheon granite cores and its impact on breakdown pressure, acoustic emission amplitudes and injectivity. International Journal of Rock Mechanics and Minings Sciences, 2019, 122, 104065.	5.8	83
11	A grain based modeling study of fracture branching during compression tests in granites. International Journal of Rock Mechanics and Minings Sciences, 2015, 77, 152-162.	5.8	77
12	Geochemical properties of saline geothermal fluids from the in-situ geothermal laboratory Groß Schönebeck (Germany). Chemie Der Erde, 2010, 70, 3-12.	2.0	69
13	The Effects of Temperature and Pressure on the Porosity Evolution of Flechtinger Sandstone. Rock Mechanics and Rock Engineering, 2014, 47, 421-434.	5.4	67
14	Potential for enhanced geothermal systems in Alberta, Canada. Energy, 2014, 69, 578-591.	8.8	66
15	Rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system — Concepts and field results. Tectonophysics, 2011, 503, 146-154.	2.2	65
16	Cyclic soft stimulation (CSS): a new fluid injection protocol and traffic light system to mitigate seismic risks of hydraulic stimulation treatments. Geothermal Energy, 2018, 6, .	1.9	65
17	Hydraulic history and current state of the deep geothermal reservoir Groß Schönebeck. Geothermics, 2016, 63, 27-43.	3.4	63
18	Direct and indirect laboratory measurements of poroelastic properties of two consolidated sandstones. International Journal of Rock Mechanics and Minings Sciences, 2014, 67, 191-201.	5.8	59

#	Article	IF	CITATIONS
19	A hybrid discrete/finite element modeling study of complex hydraulic fracture development for enhanced geothermal systems (ECS) in granitic basements. Geothermics, 2016, 64, 362-381.	3.4	59
20	Discrete element modeling of cyclic rate fluid injection at multiple locations in naturally fractured reservoirs. International Journal of Rock Mechanics and Minings Sciences, 2015, 74, 15-23.	5.8	53
21	Laboratory True Triaxial Hydraulic Fracturing of Granite Under Six Fluid Injection Schemes and Grain-Scale Fracture Observations. Rock Mechanics and Rock Engineering, 2020, 53, 4329-4344.	5.4	48
22	Pressure-dependent Production Efficiency of an Enhanced Geothermal System (EGS): Stimulation Results and Implications for Hydraulic Fracture Treatments. Pure and Applied Geophysics, 2009, 166, 1089-1106.	1.9	42
23	Microseismicity induced during fluid-injection: A case study from the geothermal site at Groß Schönebeck, North German Basin. Acta Geophysica, 2010, 58, 995-1020.	2.0	42
24	Permeability Enhancement and Fracture Development of Hydraulic In Situ Experiments in the Äspö Hard Rock Laboratory, Sweden. Rock Mechanics and Rock Engineering, 2019, 52, 495-515.	5.4	42
25	Thermoporoelastic properties of Flechtinger sandstone. International Journal of Rock Mechanics and Minings Sciences, 2012, 49, 94-104.	5.8	35
26	Transmissivity of aligned and displaced tensile fractures in granitic rocks during cyclic loading. International Journal of Rock Mechanics and Minings Sciences, 2016, 87, 69-84.	5.8	34
27	Discrete element modeling of fluid injection–induced seismicity and activation of nearby fault. Canadian Geotechnical Journal, 2015, 52, 1457-1465.	2.8	33
28	Discrete Element Modelling of Hydraulic Fracture Propagation and Dynamic Interaction with Natural Fractures in Hard Rock. Procedia Engineering, 2017, 191, 1023-1031.	1.2	33
29	Evaluating Micro-Seismic Events Triggered by Reservoir Operations at the Geothermal Site of Groß Schönebeck (Germany). Rock Mechanics and Rock Engineering, 2018, 51, 3265-3279.	5.4	31
30	Cyclic Water Injection Potentially Mitigates Seismic Risks by Promoting Slow and Stable Slip of a Natural Fracture in Granite. Rock Mechanics and Rock Engineering, 2021, 54, 5389-5405.	5.4	31
31	Observations and analyses of the first two hydraulic stimulations in the Pohang geothermal development site, South Korea. Geothermics, 2020, 88, 101905.	3.4	28
32	Keynote: Fatigue Hydraulic Fracturing. Procedia Engineering, 2017, 191, 1126-1134.	1.2	25
33	Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland. Natural Hazards and Earth System Sciences, 2020, 20, 1573-1593.	3.6	23
34	Impact of Poroelastic Response of Sandstones on Geothermal Power Production. Pure and Applied Geophysics, 2009, 166, 1107-1123.	1.9	20
35	Potential for enhanced geothermal systems in low permeability limestones – stimulation strategies for the Western Malm karst (Bavaria). Geothermics, 2014, 51, 351-367.	3.4	18
36	Relaxation damage control via fatigue-hydraulic fracturing in granitic rock as inferred from laboratory-, mine-, and field-scale experiments. Scientific Reports, 2021, 11, 6780.	3.3	18

Günter Zimmermann

#	Article	IF	CITATIONS
37	A Poroelastic Description of Permeability Evolution. Pure and Applied Geophysics, 2014, 171, 1187-1201.	1.9	17
38	Mechanically Induced Fracture-Face Skin—Insights From Laboratory Testing and Modeling Approaches. SPE Production and Operations, 2013, 28, 26-35.	0.6	16
39	Hydromechanical analysis of the second hydraulic stimulation in well PX-1 at the Pohang fractured geothermal reservoir, South Korea. Geothermics, 2021, 89, 101990.	3.4	15
40	Fluid Pressure Variation in a Sedimentary Geothermal Reservoir in the North German Basin: Case Study Groß Schönebeck. Pure and Applied Geophysics, 2006, 163, 2141-2152.	1.9	14
41	Geochemical interactions of Al2O3-based proppants with highly saline geothermal brines at simulated in situ temperature conditions. Geothermics, 2013, 47, 53-60.	3.4	14
42	Far field poroelastic response of geothermal reservoirs to hydraulic stimulation treatment: Theory and application at the Groß Schönebeck geothermal research facility. International Journal of Rock Mechanics and Minings Sciences, 2018, 110, 316-327.	5.8	14
43	Rapid water-rock interactions evidenced by hydrochemical evolution of flowback fluid during hydraulic stimulation of a deep geothermal borehole in granodiorite: Pohang, Korea. Applied Geochemistry, 2019, 111, 104445.	3.0	8
44	Static and Dynamic Moduli of Malm Carbonate: A Poroelastic Correlation. Pure and Applied Geophysics, 2016, 173, 2841-2855.	1.9	6
45	Effect of Foliation and Fluid Viscosity on Hydraulic Fracturing Tests in Mica Schists Investigated Using Distinct Element Modeling and Field Data. Rock Mechanics and Rock Engineering, 2019, 52, 555-574.	5.4	6
46	Fatigue Behavior of Granite Subjected to Cyclic Hydraulic Fracturing and Observations on Pressure for Fracture Growth. Rock Mechanics and Rock Engineering, 2021, 54, 5207.	5.4	6
47	Soft stimulation treatment of geothermal well RV-43 to meet the growing heat demand of Reykjavik. Geothermics, 2021, 96, 102146.	3.4	5
48	Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations. , 2013, , .		3
49	Impact of Poroelastic Response of Sandstones on Geothermal Power Production. , 2009, , 1107-1123.		1
50	Case Study on Groß Schönebeck EGS Project Research in Germany. Tunnel and Underground Space, 2015, 25, 320-331.	0.1	0
51	Impact of Injection Style on the Evolution of Fluid-Induced Seismicity and Permeability in Rock Mass at 410Âm Depth in Äspö Hard Rock Laboratory, Sweden. , 2020, , 89-102.		0
52	Applications for Deep Geothermal Engineering. , 2020, , 317-346.		0