Gerald E Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10550590/publications.pdf

Version: 2024-02-01

35 papers 3,083 citations

304743 22 h-index 395702 33 g-index

35 all docs

35 does citations

35 times ranked

2003 citing authors

#	Article	IF	CITATIONS
1	Study of Brain Plasticity Ramps up in the 1970s: New Phenomena and New Explanations. Brain, Behavior and Evolution, 2011, 78, 130-132.	1.7	1
2	Peptide Amphiphiles and Porous Biodegradable Scaffolds for Tissue Regeneration in the Brain and Spinal Cord. Methods in Molecular Biology, 2011, 726, 259-281.	0.9	21
3	Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5054-5059.	7.1	758
4	Nano hemostat solution: immediate hemostasis at the nanoscale. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 207-215.	3.3	233
5	Target-specific morphology of retinal axon arbors in the adult hamster. Visual Neuroscience, 1998, 15, 559-79.	1.0	51
6	A Role for Tectal Midline Glia in the Unilateral Containment of Retinocollicular Axons. Journal of Neuroscience, 1998, 18, 8344-8355.	3. 6	22
7	Target- as well as source-derived factors direct the morphogenesis of anomalous retino-thalamic projections., 1997, 388, 454-466.		7
8	Afferents from the colliculus, cortex, and retina have distinct terminal morphologies in the lateral posterior thalamic nucleus., 1997, 388, 467-483.		36
9	The optic tract in embryonic hamsters: Fasciculation, defasciculation, and other rearrangements of retinal axons. Visual Neuroscience, 1996, 13, 359-374.	1.0	10
10	Glial environment in the developing superior colliculus of hamsters in relation to the timing of retinal axon ingrowth. Journal of Comparative Neurology, 1995, 358, 206-218.	1.6	25
11	Changes in rapidly transported proteins associated with development of abnormal projections in the diencephalon. Brain Research, 1992, 586, 265-272.	2.2	10
12	Orienting behavior in hamsters with lesions of superior colliculus, pretectum, and visual cortex. Experimental Brain Research, 1992, 90, 79-91.	1.5	10
13	Aberrant retinal projections to midbrain targets mediate spared visual orienting function in hamsters with neonatal lesions of superior colliculus. Experimental Brain Research, 1992, 90, 92-102.	1.5	5
14	Oligodendrocytes and myelin formation along the optic tract of the developing hamster: An immunohistochemical study using the rip antibody. Glia, 1992, 6, 138-148.	4.9	47
15	Abnormal retinal projections alter GAP-43 patterns in the diencephalon. Brain Research, 1990, 527, 259-265.	2.2	9
16	Immunohistochemical localization of GAP-43 in the developing hamster retinofugal pathway. Journal of Comparative Neurology, 1989, 288, 51-58.	1.6	44
17	Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster. Journal of Comparative Neurology, 1988, 277, 593-607.	1.6	91
18	Exogenous GM1 gangliosides protect against retrograde degeneration following posterior neocortex lesions in developing hamsters. Brain Research, 1988, 459, 373-380.	2.2	29

#	Article	lF	Citations
19	Distribution of morphologically different retinal axon terminals in the hamster dorsal lateral geniculate nucleus. Brain Research, 1988, 461, 175-181.	2.2	22
20	Enhanced visualization of axonally transported proteins in the immature CNS by suppression of systemic labeling. Developmental Brain Research, 1987, 31, 183-191.	1.7	18
21	The morphology of optic tract axons arborizing in the superior colliculus of the hamster. Journal of Comparative Neurology, 1984, 230, 155-167.	1.6	72
22	Axon development and plasticity: Clues from species differences and suggestions for mechanisms of evolutionary change. Behavioral and Brain Sciences, 1984, 7, 346-347.	0.7	1
23	Lesions of the brachium of the superior colliculus in neonate hamsters: Correlation of anatomy with behavior. Experimental Neurology, 1981, 72, 379-400.	4.1	50
24	Early lesions and abnormal neuronal connections. Trends in Neurosciences, 1981, 4, 187-192.	8.6	58
25	Anomalous ipsilateral retinotectal projections in syrian hamsters with early lesions: Topography and functional capacity. Journal of Comparative Neurology, 1979, 183, 721-740.	1.6	119
26	Plasticity of retinofugal projections after partial lesions of the retina in newborn syrian hamsters. Journal of Comparative Neurology, 1979, 185, 517-567.	1.6	101
27	Orderly compression of the retinotectal projection following partial tectal ablation in the newborn hamster. Nature, 1979, 280, 153-155.	27.8	56
28	Is it really better to have your brain lesion early? a revision of the "Kennard Principle― Neuropsychologia, 1979, 17, 557-583.	1.6	299
29	Topography of visual and somatosensory projections to the superior colliculus of the golden hamster. Brain Research, 1978, 142, 223-235.	2.2	163
30	Postnatal development of retinal projections to the lateral geniculate body in Syrian hamsters. Brain Research, 1978, 142, 343-352.	2.2	139
31	Abnormal recrossing retinotectal projections after early lesions in Syrian hamsters: Age-related effects. Brain Research, 1978, 147, 277-295.	2.2	69
32	Retrograde cortical and axonal changes following lesions of the pyramidal tract. Brain Research, 1975, 89, 15-27.	2.2	79
33	Abnormal synaptic connections of the optic tract in the thalamus after midbrain lesions in newborn hamsters. Brain Research, 1975, 100, 690-698.	2.2	98
34	Motor performance following unilateral pyramidal tract lesions in the hamster. Brain Research, 1975, 100, 170-174.	2.2	44
35	Contrasting visuomotor functions of tectum and cortex in the golden hamster. Psychological Research, 1967, 31, 52-62.	1.7	286