Artur Cavaco-Paulo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1054984/publications.pdf

Version: 2024-02-01

357 papers

13,816 citations

23567 58 h-index 97 g-index

371 all docs

371 docs citations

371 times ranked

12182 citing authors

#	Article	IF	CITATIONS
1	Decolorization and Detoxification of Textile Dyes with a Laccase from Trametes hirsuta. Applied and Environmental Microbiology, 2000, 66, 3357-3362.	3.1	644
2	Design of liposomes as drug delivery system for therapeutic applications. International Journal of Pharmaceutics, 2021, 601, 120571.	5. 2	406
3	Biodegradable Materials Based on Silk Fibroin and Keratin. Biomacromolecules, 2008, 9, 1299-1305.	5.4	332
4	Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. Macromolecules, 2011, 44, 4632-4640.	4.8	298
5	Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 2001, 89, 131-139.	3.8	227
6	Application of enzymes for textile fibres processing. Biocatalysis and Biotransformation, 2008, 26, 332-349.	2.0	220
7	Novel silk fibroin/elastin wound dressings. Acta Biomaterialia, 2012, 8, 3049-3060.	8.3	213
8	A New Alkali-Thermostable Azoreductase from Bacillus sp. Strain SF. Applied and Environmental Microbiology, 2004, 70, 837-844.	3.1	210
9	Mechanism of cellulase action in textile processes. Carbohydrate Polymers, 1998, 37, 273-277.	10.2	185
10	Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers. Trends in Biotechnology, 2008, 26, 32-38.	9.3	183
11	Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. Journal of Biotechnology, 2009, 143, 207-212.	3.8	183
12	Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. Journal of Biotechnology, 2007, 128, 849-857.	3.8	161
13	Bio-preparation of cotton fabrics. Enzyme and Microbial Technology, 2001, 29, 357-362.	3.2	157
14	Practical insights on enzyme stabilization. Critical Reviews in Biotechnology, 2018, 38, 335-350.	9.0	152
15	Degradation of Azo Dyes by Trametes villosa Laccase over Long Periods of Oxidative Conditions. Applied and Environmental Microbiology, 2005, 71, 6711-6718.	3.1	151
16	Albumin-Based Nanodevices as Drug Carriers. Current Pharmaceutical Design, 2016, 22, 1371-1390.	1.9	134
17	Laccase: a green catalyst for the biosynthesis of poly-phenols. Critical Reviews in Biotechnology, 2018, 38, 294-307.	9.0	134
18	Characterization of Azo Reduction Activity in a Novel Ascomycete Yeast Strain. Applied and Environmental Microbiology, 2004, 70, 2279-2288.	3.1	133

#	Article	IF	CITATIONS
19	Immobilized laccase for decolourization of Reactive Black 5 dyeing effluent. Biotechnology Letters, 2003, 25, 1473-1477.	2.2	131
20	Engineered <i>Thermobifida fusca</i> cutinase with increased activity on polyester substrates. Biotechnology Journal, 2011, 6, 1230-1239.	3.5	127
21	Design of liposomal formulations for cell targeting. Colloids and Surfaces B: Biointerfaces, 2015, 136, 514-526.	5.0	126
22	New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres. Journal of Proteomics, 2006, 69, 89-99.	2.4	125
23	Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. Journal of Biotechnology, 2002, 93, 87-94.	3.8	124
24	Microaerophilic–aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochemistry, 2009, 44, 446-452.	3.7	113
25	Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresource Technology, 2010, 101, 5054-5062.	9.6	112
26	Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1113-1126.	3.3	112
27	Voltammetric monitoring of laccase-catalysed mediated reactions. Bioelectrochemistry, 2002, 58, 149-156.	4.6	110
28	Protein micro- and nano-capsules for biomedical applications. Chemical Society Reviews, 2014, 43, 1361-1371.	38.1	110
29	Therapeutic <scp>I</scp> -asparaginase: upstream, downstream and beyond. Critical Reviews in Biotechnology, 2017, 37, 82-99.	9.0	109
30	Cutinase?A new tool for biomodification of synthetic fibers. Journal of Polymer Science Part A, 2005, 43, 2448-2450.	2.3	106
31	Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. Enzyme and Microbial Technology, 2001, 28, 815-819.	3.2	105
32	An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enzyme and Microbial Technology, 2003, 33, 766-774.	3.2	104
33	Immobilization of proteases with a water soluble–insoluble reversible polymer for treatment of wool. Enzyme and Microbial Technology, 2006, 39, 634-640.	3.2	103
34	Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from <i>Penicillium citrinum </i> . Biocatalysis and Biotransformation, 2007, 25, 171-177.	2.0	103
35	Combined ultrasound-laccase assisted bleaching of cotton. Ultrasonics Sonochemistry, 2007, 14, 350-354.	8.2	101
36	Wound dressings for a proteolytic-rich environment. Applied Microbiology and Biotechnology, 2011, 90, 445-460.	3.6	96

#	Article	IF	CITATIONS
37	Effect of ultrasound parameters for unilamellar liposome preparation. Ultrasonics Sonochemistry, 2010, 17, 628-632.	8.2	91
38	Enzymatic Decolorization of Textile Dyeing Effluents. Textile Reseach Journal, 2000, 70, 409-414.	2.2	90
39	New enzymes with potential for PET surface modification. Biocatalysis and Biotransformation, 2004, 22, 341-346.	2.0	90
40	The Use of Keratin in Biomedical Applications. Current Drug Targets, 2013, 14, 612-619.	2.1	90
41	Stability and decolourization ability of Trametes villosa laccase in liquid ultrasonic fields. Ultrasonics Sonochemistry, 2007, 14, 355-362.	8.2	88
42	Laccases to Improve the Whiteness in a Conventional Bleaching of Cotton. Macromolecular Materials and Engineering, 2003, 288, 807-810.	3.6	84
43	Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability. Enzyme and Microbial Technology, 2007, 40, 1656-1661.	3.2	84
44	Effects of Agitation and Endoglucanase Pretreatment on the Hydrolysis of Cotton Fabrics by a Total Cellulase. Textile Reseach Journal, 1996, 66, 287-294.	2.2	81
45	Treatment of wool fibres with subtilisin and subtilisin-PEG. Enzyme and Microbial Technology, 2005, 36, 917-922.	3.2	81
46	Chitosan–lignosulfonates sono-chemically prepared nanoparticles: Characterisation and potential applications. Colloids and Surfaces B: Biointerfaces, 2013, 103, 1-8.	5.0	81
47	Influence of structure on dye degradation with laccase mediator systems. Biocatalysis and Biotransformation, 2004, 22, 315-324.	2.0	80
48	Studies of stabilization of native catalase using additives. Enzyme and Microbial Technology, 2002, 30, 387-391.	3.2	79
49	Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. International Journal of Pharmaceutics, 2012, 427, 460-466.	5.2	77
50	Predicting Dye Biodegradation from Redox Potentials. Biotechnology Progress, 2004, 20, 1588-1592.	2.6	76
51	Laccase immobilization on enzymatically functionalized polyamide 6,6 fibres. Enzyme and Microbial Technology, 2007, 41, 867-875.	3.2	76
52	Indigo Backstaining During Cellulase Washing. Textile Reseach Journal, 1998, 68, 398-401.	2.2	75
53	Environmentally friendly bleaching of cotton using laccases. Environmental Chemistry Letters, 2005, 3, 66-69.	16.2	74
54	Biotransformation of phenolics with laccase containing bacterial spores. Environmental Chemistry Letters, 2005, 3, 74-77.	16.2	71

#	Article	IF	CITATIONS
55	Nitrile Hydratase and Amidase from Rhodococcus rhodochrous Hydrolyze Acrylic Fibers and Granular Polyacrylonitriles. Applied and Environmental Microbiology, 2000, 66, 1634-1638.	3.1	70
56	A novel metalloprotease from Bacillus cereus for protein fibre processing. Enzyme and Microbial Technology, 2007, 40, 1772-1781.	3.2	66
57	Antimicrobial and antioxidant linen via laccase-assisted grafting. Reactive and Functional Polymers, 2011, 71, 713-720.	4.1	66
58	Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents. Journal of Biotechnology, 2001, 89, 147-153.	3.8	64
59	Effect of ultrasound on protein functionality. Ultrasonics Sonochemistry, 2021, 76, 105653.	8.2	64
60	Enzymatic hydrolysis of PTT polymers and oligomers. Journal of Biotechnology, 2008, 135, 45-51.	3.8	63
61	Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA (Cellulomonas fimi). Enzyme and Microbial Technology, 2000, 27, 325-329.	3.2	60
62	Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates. Enzyme and Microbial Technology, 2007, 40, 1678-1685.	3.2	56
63	Enhancing Methotrexate Tolerance with Folate Tagged Liposomes in Arthritic Mice. Journal of Biomedical Nanotechnology, 2015, 11, 2243-2252.	1.1	56
64	Laccases for enzymatic colouration of unbleached cotton. Enzyme and Microbial Technology, 2007, 40, 1788-1793.	3.2	55
65	Ultrasound intensification suppresses the need of methanol excess during the biodiesel production with Lipozyme TL-IM. Ultrasonics Sonochemistry, 2015, 27, 530-535.	8.2	55
66	Laccase-catalysed protein–flavonoid conjugates for flax fibre modification. Applied Microbiology and Biotechnology, 2012, 93, 585-600.	3.6	54
67	Hydrolysis of Cotton Cellulose by Engineered Cellulases from Trichoderma reesei. Textile Reseach Journal, 1998, 68, 273-280.	2.2	52
68	Polymerization study of the aromatic amines generated by the biodegradation of azo dyes using the laccase enzyme. Enzyme and Microbial Technology, 2010, 46, 360-365.	3.2	52
69	Ultrasound enhanced laccase applications. Green Chemistry, 2015, 17, 1362-1374.	9.0	52
70	Human Hair and the Impact of Cosmetic Procedures: A Review on Cleansing and Shape-Modulating Cosmetics. Cosmetics, 2016, 3, 26.	3.3	52
71	Effects of temperature on the cellulose binding ability of cellulase enzymes. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 233-239.	1.8	51
72	Effect of Some Process Parameters in Enzymatic Dyeing of Wool. Applied Biochemistry and Biotechnology, 2003, 111, 1-14.	2.9	51

#	Article	IF	Citations
73	Synthesis and characterization of starch-poly(methyl acrylate) graft copolymers using horseradish peroxidase. Carbohydrate Polymers, 2016, 136, 1010-1016.	10.2	51
74	A catalase-peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. Extremophiles, 2001, 5, 423-429.	2.3	50
75	Laccase-catalyzed decolorization of the synthetic azo-dye diamond black PV 200 and of some structurally related derivatives. Biocatalysis and Biotransformation, 2004, 22, 331-339.	2.0	50
76	Biological Coloration of Flax Fabrics with Flavonoids using Laccase from <i>Trametes hirsuta </i> . Engineering in Life Sciences, 2008, 8, 324-330.	3.6	50
77	"ln Situ―Enzymatically Prepared Polymers for Wool Coloration. Macromolecular Materials and Engineering, 2001, 286, 691.	3.6	49
78	Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. Enzyme and Microbial Technology, 2007, 40, 1801-1805.	3.2	48
79	Expression system of CotAâ€laccase for directed evolution and highâ€throughput screenings for the oxidation of highâ€redox potential dyes. Biotechnology Journal, 2009, 4, 558-563.	3.5	48
80	Cellulase Hydrolysis of Cotton Cellulose: The Effects of Mechanical Action, Enzyme Concentration and Dyed Substrates. Biocatalysis, 1994, 10, 353-360.	0.9	47
81	Keratins and lipids in ethnic hair. International Journal of Cosmetic Science, 2013, 35, 244-249.	2.6	47
82	On the Routines of Wild-Type Silk Fibroin Processing Toward Silk-Inspired Materials: A Review. Macromolecular Materials and Engineering, 2015, 300, 1199-1216.	3.6	47
83	Azo Reductase Activity of Intact Saccharomyces cerevisiae Cells Is Dependent on the Fre1p Component of Plasma Membrane Ferric Reductase. Applied and Environmental Microbiology, 2005, 71, 3882-3888.	3.1	46
84	A novel aryl acylamidase from <i>Nocardia farcinica</i> hydrolyses polyamide. Biotechnology and Bioengineering, 2009, 102, 1003-1011.	3.3	46
85	Characterization of <i>Thermobifida fusca</i> Cutinase-Carbohydrate-Binding Module Fusion Proteins and Their Potential Application in Bioscouring. Applied and Environmental Microbiology, 2010, 76, 6870-6876.	3.1	46
86	Sonoproduction of Liposomes and Protein Particles as Templates for Delivery Purposes. Biomacromolecules, 2011, 12, 3353-3368.	5.4	46
87	Enzymatic polymerization on the surface of functionalized cellulose fibers. Enzyme and Microbial Technology, 2007, 40, 1782-1787.	3.2	45
88	Protective Effect of Saccharides on Freeze-Dried Liposomes Encapsulating Drugs. Frontiers in Bioengineering and Biotechnology, 2019, 7, 424.	4.1	45
89	An immobilised catalase peroxidase from the alkalothermophilic Bacillus SF for the treatment of textile-bleaching effluents. Applied Microbiology and Biotechnology, 2002, 60, 313-319.	3.6	44
90	Polyoxometalate/laccase-mediated oxidative polymerization of catechol for textile dyeing. Applied Microbiology and Biotechnology, 2011, 89, 981-987.	3.6	44

#	Article	IF	CITATIONS
91	Fluorescent quantification of melanin. Pigment Cell and Melanoma Research, 2016, 29, 707-712.	3.3	44
92	Ultrasound enhances lipase-catalyzed synthesis of poly (ethylene glutarate). Ultrasonics Sonochemistry, 2016, 31, 506-511.	8.2	44
93	Influence of Cellulases on Indigo Backstaining. Textile Reseach Journal, 2000, 70, 628-632.	2.2	43
94	Enzymatic removal of cellulose from cotton/polyester fabric blends. Cellulose, 2006, 13, 611-618.	4.9	43
95	Hydrophobic surface functionalization of lignocellulosic jute fabrics by enzymatic grafting of octadecylamine. International Journal of Biological Macromolecules, 2015, 79, 353-362.	7.5	42
96	Optimisation of a serine protease coupling to Eudragit S-100 by experimental design techniques. Journal of Chemical Technology and Biotechnology, 2006, 81, 8-16.	3.2	41
97	Laccase kinetics of degradation and coupling reactions. Journal of Molecular Catalysis B: Enzymatic, 2005, 33, 23-28.	1.8	40
98	Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. Journal of Biotechnology, 2007, 129, 62-68.	3.8	40
99	Insights on the Mechanism of Formation of Protein Microspheres in a Biphasic System. Molecular Pharmaceutics, 2012, 9, 3079-3088.	4.6	40
100	Enzymatic Treatment of Lyocell—Clarification of Depilling Mechanisms. Textile Reseach Journal, 2000, 70, 696-699.	2.2	39
101	Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 123-130.	3.3	39
102	Extracellular Purine Metabolism Is the Switchboard of Immunosuppressive Macrophages and a Novel Target to Treat Diseases With Macrophage Imbalances. Frontiers in Immunology, 2018, 9, 852.	4.8	39
103	Purification and mechanistic characterisation of two polygalacturonases from Sclerotium rolfsii. Enzyme and Microbial Technology, 2007, 40, 1739-1747.	3.2	38
104	Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics. Ultrasonics Sonochemistry, 2014, 21, 1535-1543.	8.2	38
105	Changing the shape of hair with keratin peptides. RSC Advances, 2017, 7, 51581-51592.	3.6	38
106	Indigo-Cellulase Interactions. Textile Reseach Journal, 2000, 70, 532-536.	2.2	37
107	Enzymatic processing of protein-based fibers. Applied Microbiology and Biotechnology, 2015, 99, 10387-10397.	3.6	37
108	Dyeing in catalase-treated bleaching baths. Coloration Technology, 2001, 117, 1-5.	1.5	36

#	Article	IF	CITATIONS
109	Implementation of batchwise bioscouring of cotton knits. Biocatalysis and Biotransformation, 2004, 22, 375-382.	2.0	36
110	Biotechnology in the textile industryâ€"perspectives for the new millennium. Journal of Biotechnology, 2001, 89, 89-90.	3.8	35
111	Monitoring biotransformations in polyamide fibres. Biocatalysis and Biotransformation, 2004, 22, 357-360.	2.0	35
112	Enzymatic reduction and oxidation of fibre-bound azo-dyes. Enzyme and Microbial Technology, 2007, 40, 1732-1738.	3.2	35
113	Enzymatic reduction of azo and indigoid compounds. Applied Microbiology and Biotechnology, 2007, 77, 321-327.	3.6	35
114	Encapsulation of RNA Molecules in BSA Microspheres and Internalization into <i>Trypanosoma Brucei</i> Parasites and Human U2OS Cancer Cells. Advanced Functional Materials, 2011, 21, 3659-3666.	14.9	35
115	New Enzyme-based Process Direction to Prevent Wool Shrinking without Substantial Tensile Strength Loss. Biotechnology Letters, 2006, 28, 711-716.	2.2	34
116	Proteolytic Enzyme Engineering: A Tool for Wool. Biomacromolecules, 2009, 10, 1655-1661.	5.4	34
117	Fragrance release profile from sonochemically prepared protein microsphere containers. Ultrasonics Sonochemistry, 2012, 19, 858-863.	8.2	34
118	Peptide Anchor for Folate-Targeted Liposomal Delivery. Biomacromolecules, 2015, 16, 2904-2910.	5.4	34
119	Antioxidant cosmetotextiles: Cotton coating with nanoparticles containing vitamin E. Process Biochemistry, 2017, 59, 46-51.	3.7	34
120	Monitoring biotransformations in polyesters. Biocatalysis and Biotransformation, 2004, 22, 353-356.	2.0	33
121	Using a nitrilase for the surface modification of acrylic fibres. Biotechnology Journal, 2007, 2, 353-360.	3.5	33
122	The effect of cellulase treatment in textile washing processes. Coloration Technology, 2008, 113, 218-222.	0.1	33
123	Characterisation of enzymatically oxidised lignosulfonates and their application on lignocellulosic fabrics. Polymer International, 2009, 58, 863-868.	3.1	33
124	Folic acid-tagged protein nanoemulsions loaded with CORM-2 enhance the survival of mice bearing subcutaneous A20 lymphoma tumors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1077-1083.	3.3	33
125	Preparation and rheological properties of starch- g -poly(butyl acrylate) catalyzed by horseradish peroxidase. Process Biochemistry, 2017, 59, 104-110.	3.7	33
126	Influence of organic solvents on cutinase stability and accessibility to polyamide fibers. Journal of Polymer Science Part A, 2005, 43, 2749-2753.	2.3	32

#	Article	IF	Citations
127	Interactions of cotton with CBD peptides. Enzyme and Microbial Technology, 1999, 25, 639-643.	3.2	31
128	Recycling of textile bleaching effluents for dyeing using immobilized catalase. Biotechnology Letters, 2002, 24, 173-176.	2,2	31
129	Protein Matrices for Improved Wound Healing: Elastase Inhibition by a Synthetic Peptide Model. Biomacromolecules, 2010, 11, 2213-2220.	5.4	31
130	Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching. Ultrasonics Sonochemistry, 2014, 21, 774-781.	8.2	31
131	Enzymatic colouration with laccase and peroxidases: Recent progress. Biocatalysis and Biotransformation, 2012, 30, 125-140.	2.0	30
132	Protein microspheres as suitable devices for piroxicam release. Colloids and Surfaces B: Biointerfaces, 2012, 92, 277-285.	5.0	30
133	Catalysis and processing. , 2003, , 86-119.		29
134	Bio-processing of bamboo fibres for textile applications: a mini review. Biocatalysis and Biotransformation, 2012, 30, 141-153.	2.0	29
135	Sonochemical Coating of Cotton and Polyester Fabrics with "Antibacterial―BSA and Casein Spheres. Chemistry - A European Journal, 2012, 18, 365-369.	3.3	29
136	Development of Elastin-Like Recombinamer Films with Antimicrobial Activity. Biomacromolecules, 2015, 16, 625-635.	5.4	29
137	Lipase-ultrasound assisted synthesis of polyesters. Ultrasonics Sonochemistry, 2017, 38, 496-502.	8.2	29
138	In vitro and computational studies of transdermal perfusion of nanoformulations containing a large molecular weight protein. Colloids and Surfaces B: Biointerfaces, 2013, 108, 271-278.	5.0	27
139	HRP-mediated polyacrylamide graft modification of raw jute fabric. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 29-38.	1.8	27
140	Detection of human neutrophil elastase (HNE) on wound dressings as marker of inflammation. Applied Microbiology and Biotechnology, 2017, 101, 1443-1454.	3.6	27
141	Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion. Acta Biomaterialia, 2017, 47, 50-59.	8.3	27
142	Antimicrobial coating of textiles by laccase in situ polymerization of catechol and p-phenylenediamine. Reactive and Functional Polymers, 2019, 136, 25-33.	4.1	27
143	Processing Textile Fibers with Enzymes: An Overview. ACS Symposium Series, 1998, , 180-189.	0.5	26
144	Surface modification of polyacrylonitrile with nitrile hydratase and amidase from Agrobacterium tumefaciens. Biocatalysis and Biotransformation, 2006, 24, 419-425.	2.0	26

#	Article	IF	Citations
145	Restricting detergent protease action to surface of protein fibres by chemical modification. Applied Microbiology and Biotechnology, 2006, 72, 738-744.	3.6	26
146	Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair. Biocatalysis and Biotransformation, 2012, 30, 10-19.	2.0	26
147	Functionalization of gauzes with liposomes entrapping an anti-inflammatory drug: A strategy to improve wound healing. Reactive and Functional Polymers, 2013, 73, 1328-1334.	4.1	26
148	Liposome and protein based stealth nanoparticles. Faraday Discussions, 2013, 166, 417.	3.2	26
149	Odorant binding proteins: a biotechnological tool for odour control. Applied Microbiology and Biotechnology, 2014, 98, 3629-3638.	3.6	26
150	Conductive Cotton Prepared by Polyaniline In Situ Polymerization Using Laccase. Applied Biochemistry and Biotechnology, 2014, 174, 820-831.	2.9	26
151	Size controlled protein nanoemulsions for active targeting of folate receptor positive cells. Colloids and Surfaces B: Biointerfaces, 2015, 135, 90-98.	5.0	26
152	Bio-coloration of bacterial cellulose assisted by immobilized laccase. AMB Express, 2018, 8, 19.	3.0	26
153	Indigo Degradation with Laccases from <i>Polyporus sp.</i> and <i>Sclerotium rolfsii</i> Textile Reseach Journal, 2001, 71, 420-424.	2.2	25
154	Neutral PEGylated liposomal formulation for efficient folate-mediated delivery of MCL1 siRNA to activated macrophages. Colloids and Surfaces B: Biointerfaces, 2017, 155, 459-465.	5.0	25
155	Incorporation of peptides in phospholipid aggregates using ultrasound. Ultrasonics Sonochemistry, 2008, 15, 1026-1032.	8.2	24
156	In situ laccaseâ€assisted overdyeing of denim using flavonoids. Biotechnology Journal, 2011, 6, 1272-1279.	3.5	24
157	Enzymatic surface hydrolysis of PET enhances bonding in PVC coating. Biocatalysis and Biotransformation, 2008, 26, 365-370.	2.0	23
158	Modulating antioxidant activity and the controlled release capability of laccase mediated catechin grafting of chitosan. Process Biochemistry, 2017, 59, 65-76.	3.7	23
159	The effect of high-energy environments on the structure of laccase-polymerized poly(catechol). Ultrasonics Sonochemistry, 2018, 48, 275-280.	8.2	23
160	Electrostatics of Tau Protein by Molecular Dynamics. Biomolecules, 2019, 9, 116.	4.0	23
161	Kinetic Parameters Measured during Cellulase Processing of Cotton. Journal of the Textile Institute, 1996, 87, 227-233.	1.9	22
162	Phosphorylation of Cotton Cellulose with Baker's Yeast Hexokinase. Macromolecular Rapid Communications, 2002, 23, 962-964.	3.9	22

#	Article	IF	CITATIONS
163	The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase. Biotechnology Journal, 2006, 1, 842-849.	3.5	22
164	Design of Novel BSA/Hyaluronic Acid Nanodispersions for Transdermal Pharma Purposes. Molecular Pharmaceutics, 2014, 11, 1479-1488.	4.6	22
165	Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester. Ultrasonics Sonochemistry, 2018, 40, 587-593.	8.2	22
166	Zein impart hydrophobic and antimicrobial properties to cotton textiles. Reactive and Functional Polymers, 2020, 154, 104664.	4.1	22
167	Polyoxometalates as mediators in the laccase catalyzed delignification. Journal of Molecular Catalysis B: Enzymatic, 2001, 16, 131-140.	1.8	21
168	Surface hydrolysis of polyamide with a new polyamidase from <i>Beauveria </i> brongniartii Biocatalysis and Biotransformation, 2008, 26, 371-377.	2.0	21
169	Microspheres of Mixed Proteins. Chemistry - A European Journal, 2010, 16, 2108-2114.	3.3	21
170	Functionalization of cellulose acetate fibers with engineered cutinases. Biotechnology Progress, 2010, 26, 636-643.	2.6	21
171	Keratinâ€based peptide: biological evaluation and strengthening properties on relaxed hair. International Journal of Cosmetic Science, 2012, 34, 338-346.	2.6	21
172	Jute/polypropylene composites: Effect of enzymatic modification on thermo-mechanical and dynamic mechanical properties. Fibers and Polymers, 2015, 16, 2276-2283.	2.1	21
173	Ultrasoundâ€assisted swelling of bacterial cellulose. Engineering in Life Sciences, 2017, 17, 1108-1117.	3.6	21
174	Ultrasound-Assisted Encapsulation of Sacha Inchi (Plukenetia volubilis Linneo.) Oil in Alginate-Chitosan Nanoparticles. Polymers, 2019, 11, 1245.	4.5	21
175	Quantification of drugs encapsulated in liposomes by 1H NMR. Colloids and Surfaces B: Biointerfaces, 2019, 179, 414-420.	5.0	21
176	Increased Encapsulation Efficiency of Methotrexate in Liposomes for Rheumatoid Arthritis Therapy. Biomedicines, 2020, 8, 630.	3.2	21
177	Ohmic heating as an innovative approach for the production of keratin films. International Journal of Biological Macromolecules, 2020, 150, 671-680.	7.5	21
178	Biotransformations in synthetic fibres. Biocatalysis and Biotransformation, 2008, 26, 350-356.	2.0	20
179	PEGylation Greatly Enhances Laccase Polymerase Activity. ChemCatChem, 2017, 9, 3888-3894.	3.7	20
180	Polymeric Electrospun Fibrous Dressings for Topical Co-delivery of Acyclovir and Omega-3 Fatty Acids. Frontiers in Bioengineering and Biotechnology, 2019, 7, 390.	4.1	20

#	Article	IF	CITATIONS
181	Stratum corneum lipid matrix with unusual packing: A molecular dynamics study. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110928.	5.0	20
182	Green Extraction of Cork Bioactive Compounds Using Natural Deep Eutectic Mixtures. ACS Sustainable Chemistry and Engineering, 2022, 10, 7974-7989.	6.7	20
183	A new cuticle scale hydrolysing protease from Beauveria brongniartii. Biotechnology Letters, 2006, 28, 703-710.	2.2	19
184	Detergent Formulations for Wool Domestic Washings Containing Immobilized Enzymes. Biotechnology Letters, 2006, 28, 725-731.	2.2	19
185	Staining of wool using the reaction products of ABTS oxidation by Laccase: Synergetic effects of ultrasound and cyclic voltammetry. Ultrasonics Sonochemistry, 2007, 14, 363-367.	8.2	19
186	Potential of human î³ <scp>D</scp> â€erystallin for hair damage repair: insights into the mechanical properties and biocompatibility. International Journal of Cosmetic Science, 2013, 35, 458-466.	2.6	19
187	Functionalized protein nanoemulsions by incorporation of chemically modified BSA. RSC Advances, 2015, 5, 4976-4983.	3.6	19
188	Enzymatic Hydrophobic Modification of Jute Fibers via Grafting to Reinforce Composites. Applied Biochemistry and Biotechnology, 2016, 178, 1612-1629.	2.9	19
189	Conductive Cotton by In Situ Laccase-Polymerization of Aniline. Polymers, 2018, 10, 1023.	4.5	19
190	Exploring PEGylated and immobilized laccases for catechol polymerization. AMB Express, 2018, 8, 134.	3.0	19
191	Keratinâ€based particles for protection and restoration of hair properties. International Journal of Cosmetic Science, 2018, 40, 408-419.	2.6	19
192	Substrate hydrophobicity and enzyme modifiers play a major role in the activity of lipase from <i>Thermomyces lanuginosus</i> . Catalysis Science and Technology, 2020, 10, 5913-5924.	4.1	19
193	Cellulose Dissolved in Ionic Liquids for Modification of the Shape of Keratin Fibers. ACS Sustainable Chemistry and Engineering, 2021, 9, 4102-4110.	6.7	19
194	Update on Therapeutic Approaches for Rheumatoid Arthritis. Current Medicinal Chemistry, 2016, 23, 2190-2203.	2.4	19
195	Effect of temperature and bath composition on the dyeing of cotton with catalase-treated bleaching effluent. Coloration Technology, 2001, 117, 166-170.	1.5	18
196	Inâ€situ Enzymatic Generation of Hydrogen Peroxide for Bleaching Purposes. Engineering in Life Sciences, 2008, 8, 315-323.	3.6	18
197	The effects of solvent composition on the affinity of a peptide towards hair keratin: experimental and molecular dynamics data. RSC Advances, 2015, 5, 12365-12371.	3.6	18
198	Protein Formulations for Emulsions and Solid-in-Oil Dispersions. Trends in Biotechnology, 2016, 34, 496-505.	9.3	18

#	Article	IF	CITATIONS
199	Hydrophobic functionalization of jute fabrics by enzymatic-assisted grafting of vinyl copolymers. New Journal of Chemistry, 2017, 41, 3773-3780.	2.8	18
200	Conductive bacterial cellulose by in situ laccase polymerization of aniline. PLoS ONE, 2019, 14, e0214546.	2.5	18
201	Peptideâ€"protein interactions within human hair keratins. International Journal of Biological Macromolecules, 2017, 101, 805-814.	7. 5	17
202	Enzymatic modification of jute fabrics for enhancing the reinforcement in jute/PP composites. Journal of Thermoplastic Composite Materials, 2018, 31, 483-499.	4.2	17
203	OBP fused with cell-penetrating peptides promotes liposomal transduction. Colloids and Surfaces B: Biointerfaces, 2018, 161, 645-653.	5.0	17
204	Enzymatic polymerization of catechol under high-pressure homogenization for the green coloration of textiles. Journal of Cleaner Production, 2018, 202, 792-798.	9.3	17
205	Treatment of cotton fabrics with purified Trichoderma reesei cellulases. Coloration Technology, 2008, 114, 216-220.	0.1	16
206	Proteinaceous microspheres for targeted RNA delivery prepared by an ultrasonic emulsification method. Journal of Materials Chemistry B, 2013, 1, 82-90.	5.8	16
207	Enzymatic synthesis of antibody-human serum albumin conjugate for targeted drug delivery using tyrosinase from Agaricus bisporus. RSC Advances, 2013, 3, 1460-1467.	3.6	16
208	Exposure Assessment Based Recommendations to Improve Nanosafety at Nanoliposome Production Sites. Journal of Nanomaterials, 2015, 2015, 1-10.	2.7	16
209	Enzymatic synthesis of poly(catechin)-antibiotic conjugates: an antimicrobial approach for indwelling catheters. Applied Microbiology and Biotechnology, 2015, 99, 637-651.	3.6	16
210	Changes on Content, Structure and Surface Distribution of Lignin in Jute Fibers After Laccase Treatment. Journal of Natural Fibers, 2018, 15, 384-395.	3.1	16
211	Ultrasound-assisted biosynthesis of novel methotrexate-conjugates. Ultrasonics Sonochemistry, 2018, 48, 51-56.	8.2	16
212	Release of Fragrances from Cotton Functionalized with Carbohydrate-Binding Module Proteins. ACS Applied Materials & Diterfaces, 2019, 11, 28499-28506.	8.0	16
213	Laccase-catalyzed cross-linking of BSA mediated by tyrosine. International Journal of Biological Macromolecules, 2021, 166, 798-805.	7.5	16
214	Enzymatic synthesis of Tinuvin. Enzyme and Microbial Technology, 2007, 40, 1748-1752.	3.2	15
215	Bamboo fibre processing: insights into hemicellulase and cellulase substrate accessibility. Biocatalysis and Biotransformation, 2012, 30, 27-37.	2.0	15
216	HSA nanocapsules functionalized with monoclonal antibodies for targeted drug delivery. International Journal of Pharmaceutics, 2013, 458, 1-8.	5.2	15

#	Article	IF	CITATIONS
217	Can Laccase-Assisted Processing Conditions Influence the Structure of the Reaction Products?. Trends in Biotechnology, 2019, 37, 683-686.	9.3	15
218	Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. Textile Reseach Journal, 2020, 90, 166-178.	2.2	15
219	Biotechnology of functional proteins and peptides for hair cosmetic formulations. Trends in Biotechnology, 2022, 40, 591-605.	9.3	15
220	Improved Poly (D,Lâ€lactide) nanoparticlesâ€based formulation for hair follicle targeting. International Journal of Cosmetic Science, 2015, 37, 282-290.	2.6	14
221	Possibilities for Recycling Cellulases After Use in Cotton Processing: Part I: Effects of End-Product Inhibition, Thermal and Mechanical Deactivation, and Cellulase Depletion by Adsorption. Applied Biochemistry and Biotechnology, 2002, 101, 61-76.	2.9	13
222	Biodegradable Materials Based on Silk Fibroin and Keratin. Biomacromolecules, 2009, 10, 1019-1019.	5.4	13
223	Tailoring elastase inhibition with synthetic peptides. European Journal of Pharmacology, 2011, 666, 53-60.	3.5	13
224	Molecular modeling of hair keratin/peptide complex: Using MMâ€PBSA calculations to describe experimental binding results. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1409-1417.	2.6	13
225	Hair Coloration by Gene Regulation: Fact or Fiction?. Trends in Biotechnology, 2015, 33, 707-711.	9.3	13
226	Insights on the mechanical behavior of keratin fibrils. International Journal of Biological Macromolecules, 2016, 89, 477-483.	7.5	13
227	Enzymeâ€mediated surface modification of jute and its influence on the properties of jute/epoxy composites. Polymer Composites, 2017, 38, 1327-1334.	4.6	13
228	Cyclosporin A-loaded poly(<scp>d,l</scp> -lactide) nanoparticles: a promising tool for treating alopecia. Nanomedicine, 2020, 15, 1459-1469.	3.3	13
229	Specificities of a chemically modified laccase from Trametes hirsuta on soluble and cellulose-bound substrates. Biotechnology Letters, 2006, 28, 741-747.	2.2	12
230	Attaching Different Kinds of Proteinaceous Nanospheres to a Variety of Fabrics Using Ultrasound Radiation. Israel Journal of Chemistry, 2010, 50, 524-529.	2.3	12
231	Hydrolysis of Cutin by PETâ€Hydrolases. Macromolecular Symposia, 2010, 296, 342-346.	0.7	12
232	Biology of Human Hair: Know Your Hair to Control It. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 121-143.	1.1	12
233	Releasing Dye Encapsulated in Proteinaceous Microspheres on Conductive Fabrics by Electric Current. ACS Applied Materials & Diterfaces, 2012, 4, 2926-2930.	8.0	12
234	Characterization of potential elastase inhibitor-peptides regulated by a molecular switch for wound dressings applications. Enzyme and Microbial Technology, 2012, 50, 107-114.	3.2	12

#	Article	IF	Citations
235	Laccase coating of catheters with poly(catechin) for biofilm reduction. Biocatalysis and Biotransformation, 2014, 32, 2-12.	2.0	12
236	Stabilization of enzymes in micro-emulsions for ultrasound processes. Biochemical Engineering Journal, 2015, 93, 115-118.	3.6	12
237	Jute hydrophobization via laccase-catalyzed grafting of fluorophenol and fluoroamine. RSC Advances, 2016, 6, 90427-90434.	3.6	12
238	Preparation of functionalized cotton based on laccase-catalyzed synthesis of polyaniline in perfluorooctanesulfonate acid potassium salt (PFOS) template. RSC Advances, 2016, 6, 49272-49280.	3.6	12
239	"In-situ―lipase-catalyzed cotton coating with polyesters from ethylene glycol and glycerol. Process Biochemistry, 2018, 66, 82-88.	3.7	12
240	Absence of Albumin Improves <i>in Vitro</i> Cellular Uptake and Disruption of Poloxamer 407-Based Nanoparticles inside Cancer Cells. Molecular Pharmaceutics, 2018, 15, 527-535.	4.6	12
241	Internalization of Methotrexate Conjugates by Folate Receptor-α. Biochemistry, 2018, 57, 6780-6786.	2.5	12
242	Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder. PLoS ONE, 2018, 13, e0197537.	2.5	12
243	Fusion proteins with chromogenic and keratin binding modules. Scientific Reports, 2019, 9, 14044.	3.3	12
244	Coloured and low conductive fabrics by in situ laccase-catalysed polymerization. Process Biochemistry, 2019, 77, 77-84.	3.7	12
245	Poloxamer 407 based-nanoparticles for controlled release of methotrexate. International Journal of Pharmaceutics, 2020, 575, 118924.	5.2	12
246	Biotechnological applications of mammalian odorant-binding proteins. Critical Reviews in Biotechnology, 2021, 41, 441-455.	9.0	12
247	Enzymatic hydrophobization of jute fabrics and its effect on the mechanical and interfacial properties of jute/PP composites. EXPRESS Polymer Letters, 2016, 10, 420-429.	2.1	12
248	Desorption of cellulases from cotton powder. Biotechnology Letters, 2001, 23, 1445-1448.	2.2	11
249	Protein disulphide isomerase-assisted functionalization of keratin-based matrices. Applied Microbiology and Biotechnology, 2011, 90, 1311-1321.	3.6	11
250	Woundâ€healing evaluation of entrapped active agents into protein microspheres over cellulosic gauzes. Biotechnology Journal, 2012, 7, 1376-1385.	3.5	11
251	Developing scaffolds for tissue engineering using the Ca ²⁺ â€induced cold gelation by an experimental design approach. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2269-2278.	3.4	11
252	Production of heterologous cutinases by E. coli and improved enzyme formulation for application on plastic degradation. Electronic Journal of Biotechnology, 2013, 16, .	2.2	11

#	Article	IF	Citations
253	Counter ions and constituents combination affect DODAX : MO nanocarriers toxicity in vitro and in vivo. Toxicology Research, 2016, 5, 1244-1255.	2.1	11
254	Catalytic Activation of Esterases by PEGylation for Polyester Synthesis. ChemCatChem, 2019, 11, 2490-2499.	3.7	11
255	Changes in the bacterial community structure and diversity during bamboo retting. Biotechnology Journal, 2011, 6, 1262-1271.	3.5	10
256	Sonochemical Proteinaceous Microspheres for Wound Healing. Advances in Experimental Medicine and Biology, 2012, 733, 155-164.	1.6	10
257	The activity of LE10 peptide on biological membranes using molecular dynamics, in vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 2013, 106, 240-247.	5.0	10
258	Lipases efficiently stearate and cutinases acetylate the surface of arabinoxylan films. Journal of Biotechnology, 2013, 167, 16-23.	3.8	10
259	Nonionic surfactants and dispersants for biopolishing and stonewashing withHypocrea jecorinacellulases. Coloration Technology, 2013, 129, 49-54.	1.5	10
260	Phosphorylated Silk Fibroin Matrix for Methotrexate Release. Molecular Pharmaceutics, 2015, 12, 75-86.	4.6	10
261	Albumin/asparaginase capsules prepared by ultrasound to retain ammonia. Applied Microbiology and Biotechnology, 2016, 100, 9499-9508.	3.6	10
262	Assessment of penetration of Ascorbyl Tetraisopalmitate into biological membranes by molecular dynamics. Computers in Biology and Medicine, 2016, 75, 151-159.	7.0	10
263	Enzymatic phosphorylation of hair keratin enhances fast adsorption of cationic moieties. International Journal of Biological Macromolecules, 2016, 85, 476-486.	7.5	10
264	Effect of a peptide in cosmetic formulations for hair volume control. International Journal of Cosmetic Science, 2017, 39, 600-609.	2.6	10
265	Carboxymethyl Cellulose (CMC) as a Template for Laccase-Assisted Oxidation of Aniline. Frontiers in Bioengineering and Biotechnology, 2020, 8, 438.	4.1	10
266	Effect of purifiedTrichoderma reesei cellulases on formation of cotton powder from cotton fabric. Journal of Applied Polymer Science, 2003, 90, 1917-1922.	2.6	9
267	Cotton fabric: A natural matrix suitable for controlled release systems. Enzyme and Microbial Technology, 2007, 40, 1646-1650.	3.2	9
268	Enzymatic hydrolysis and modification of core polymer fibres for textile and other applications. , $2010, 77-97$.		9
269	Influence of secretory leukocyte protease inhibitorâ€based peptides on elastase activity and their incorporation in hyaluronic acid hydrogels for chronic wound therapy. Biopolymers, 2012, 98, 576-590.	2.4	9
270	Direct enzymatic esterification of cotton and Avicel with wild-type and engineered cutinases. Cellulose, 2013, 20, 409-416.	4.9	9

#	Article	IF	Citations
271	BSA/HSA ratio modulates the properties of Ca2+-induced cold gelation scaffolds. International Journal of Biological Macromolecules, 2016, 89, 535-544.	7.5	9
272	Assessment of liposome disruption to quantify drug delivery in vitro. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 163-167.	2.6	9
273	The influence of the morphological characteristics of nanoporous anodic aluminium oxide (AAO) structures on capacitive touch sensor performance: a biological application. RSC Advances, 2018, 8, 37254-37266.	3.6	9
274	Polymers from Bamboo Extracts Produced by Laccase. Polymers, 2018, 10, 1141.	4.5	9
275	Effect of Additives on the in situ Laccase-Catalyzed Polymerization of Aniline Onto Bacterial Cellulose. Frontiers in Bioengineering and Biotechnology, 2019, 7, 264.	4.1	9
276	Polymeric Hydrogel Coating for Modulating the Shape of Keratin Fiber. Frontiers in Chemistry, 2019, 7, 749.	3.6	9
277	Lipases to Improve the Performance of Formaldehyde-Free Durable Press Finished Cotton Fabrics. Macromolecular Materials and Engineering, 2002, 287, 462.	3.6	8
278	Possibilities for Recycling Cellulases After Use in Cotton Processing: Part II: Separation of Cellulases from Reaction Products and Released Dyestuffs by Ultrafiltration. Applied Biochemistry and Biotechnology, 2002, 101, 77-92.	2.9	8
279	Bioelectrochemical investigations of aryl-alcohol oxidase from Pleurotus eryngii. Journal of Electroanalytical Chemistry, 2008, 618, 83-86.	3.8	8
280	Effects of adsorption properties and mechanical agitation of two detergent cellulases towards cotton cellulose. Biocatalysis and Biotransformation, 2012, 30, 260-271.	2.0	8
281	Phosphorylation of silk fibroins improves the cytocompatibility of silk fibroin derived materials: A platform for the production of tuneable material. Biotechnology Journal, 2014, 9, 1267-1278.	3.5	8
282	A biologically active delivery material with dried-rehydrated vesicles containing the anti-inflammatory diclofenac for potential wound healing. Journal of Liposome Research, 2016, 26, 269-275.	3.3	8
283	Enzymatic coating of jute fabrics for enhancing anti-ultraviolent properties via in-situ polymerization of polyhydric phenols. Journal of Industrial Textiles, 2016, 46, 160-176.	2.4	8
284	Permeation of skin with (C ₆₀) fullerene dispersions. Engineering in Life Sciences, 2017, 17, 732-738.	3.6	8
285	Enzymatic coating of cotton with poly (ethylene glutarate). Process Biochemistry, 2017, 59, 91-96.	3.7	8
286	Two Engineered OBPs with opposite temperature-dependent affinities towards 1-aminoanthracene. Scientific Reports, 2018, 8, 14844.	3.3	8
287	Humidity Induces Changes in the Dimensions of Hydrogel-Coated Wool Yarns. Polymers, 2018, 10, 260.	4.5	8
288	Strategies towards the Functionalization of Subtilisin E from <i>Bacillus subtilis</i> for Wool Finishing Applications. Engineering in Life Sciences, 2008, 8, 238-249.	3.6	7

#	Article	IF	Citations
289	Enzymatic Treatments to Improve Mechanical Properties and Surface Hydrophobicity of Jute Fiber Membranes. BioResources, 2016, 11 , .	1.0	7
290	Crystallin Fusion Proteins Improve the Thermal Properties of Hair. Frontiers in Bioengineering and Biotechnology, 2019, 7, 298.	4.1	7
291	Production of antimicrobial powders of guaiacol oligomers by a laccase-catalyzed synthesis reaction. Process Biochemistry, 2021, 111, 213-220.	3.7	7
292	Mapping hair follicle-targeted delivery by particle systems: What has science accomplished so far?. International Journal of Pharmaceutics, 2021, 610, 121273.	5.2	7
293	Grafting of Poly(tyrosine) by Laccase Improves the Tensile Strength and Anti-shrinkage of Wool. Journal of Natural Fibers, 2022, 19, 10979-10991.	3.1	7
294	Satureja montana Essential Oil, Zein Nanoparticles and Their Combination as a Biocontrol Strategy to Reduce Bacterial Spot Disease on Tomato Plants. Horticulturae, 2021, 7, 584.	2.8	7
295	Molecular recognition of esterase plays a major role on the removal of fatty soils during detergency. Journal of Biotechnology, 2012, 161, 228-234.	3.8	6
296	<i>In vitro</i> induction of melanin synthesis and extrusion by tamoxifen. International Journal of Cosmetic Science, 2013, 35, 368-374.	2.6	6
297	NMR and molecular modelling studies on elastase inhibitor-peptides for wound management. Reactive and Functional Polymers, 2013, 73, 1357-1365.	4.1	6
298	Laccaseâ€catalyzed synthesis of conducting polyanilineâ€lignosulfonate composite. Journal of Applied Polymer Science, 2016, 133, .	2.6	6
299	Proteinâ€based nanoformulations for αâ€tocopherol encapsulation. Engineering in Life Sciences, 2017, 17, 523-527.	3.6	6
300	PTS micelles for the delivery of hydrophobic methotrexate. International Journal of Pharmaceutics, 2019, 566, 282-290.	5.2	6
301	Cellulases in the textile industry—an overview. Carbohydrate Polymers, 1997, 34, 423.	10.2	5
302	Proteases to Improve the Mechanical Characteristics of Durable Press Finished Cotton Fabrics. Macromolecular Materials and Engineering, 2003, 288, 71-75.	3.6	5
303	Advances in biotechnology for fibre processing. Biotechnology Letters, 2006, 28, 679-680.	2.2	5
304	Liposome formation with wool lipid extracts rich in ceramides. Journal of Liposome Research, 2009, 19, 77-83.	3.3	5
305	Oil-based cyclo-oligosaccharide nanodevices for drug encapsulation. Colloids and Surfaces B: Biointerfaces, 2017, 159, 259-267.	5.0	5
306	1-Aminoanthracene Transduction into Liposomes Driven by Odorant-Binding Protein Proximity. ACS Applied Materials & Driven Brown and Science (1988) 10, 27531-27539.	8.0	5

#	Article	IF	Citations
307	Ohmic heating as a new tool for protein scaffold engineering. Materials Science and Engineering C, 2021, 120, 111784.	7.3	5
308	Proteins as Hair Styling Agents. Applied Sciences (Switzerland), 2021, 11, 4245.	2.5	5
309	Chemical modification of lipases: A powerful tool for activity improvement. Biotechnology Journal, 2022, 17, e2100523.	3.5	5
310	Biosensors Based on Laccase for Detection of Commercially Reactive Dyes. Analytical Letters, 2010, 43, 1126-1131.	1.8	4
311	Protein disulphide isomerase-assisted functionalization of proteinaceous substrates. Biocatalysis and Biotransformation, 2012, 30, 111-124.	2.0	4
312	Treatment of cotton with an alkaline <i>Bacillus</i> spp cellulase: Activity towards crystalline cellulose. Biotechnology Journal, 2012, 7, 275-283.	3.5	4
313	Strategies for the synthesis of fluorinated polyesters. RSC Advances, 2019, 9, 1799-1806.	3.6	4
314	α-Chymotrypsin catalyses the synthesis of methotrexate oligomers. Process Biochemistry, 2020, 98, 193-201.	3.7	4
315	The Structural Properties of Odorants Modulate Their Association to Human Odorant Binding Protein. Biomolecules, 2021, 11, 145.	4.0	4
316	Chemically Modified Lipase from <i>Thermomyces lanuginosus</i> with Enhanced Esterification and Transesterification Activities. ChemCatChem, 2021, 13, 4524-4531.	3.7	4
317	Kinetics of direct and substrate-mediated electron transfer of versatile peroxidase-modified graphite electrodes. Journal of Electroanalytical Chemistry, 2005, 580, 35-40.	3.8	3
318	Biotechnological treatment of textile dye effluent., 2007,, 212-231.		3
319	Decolourisation of a synthetic textile effluent using a bacterial consortium. Biotechnology Journal, 2007, 2, 370-373.	3.5	3
320	Protein disulphide isomerase-induced refolding of sonochemically prepared Ribonuclease A microspheres. Journal of Biotechnology, 2012, 159, 78-82.	3.8	3
321	In vitro phosphorylation as tool for modification of silk and keratin fibrous materials. Applied Microbiology and Biotechnology, 2016, 100, 4337-4345.	3.6	3
322	Enzyme stabilization for biotechnological applications. , 2019, , 107-131.		3
323	BSA/ASN/Pol407 nanoparticles for acute lymphoblastic leukemia treatment. Biochemical Engineering Journal, 2019, 141, 80-88.	3.6	3
324	Hair resistance to mechanical wear. Wear, 2021, 470-471, 203612.	3.1	3

#	Article	IF	CITATIONS
325	Changing the shape of wool yarns via laccase-mediated grafting of tyrosine. Journal of Biotechnology, 2021, 339, 73-80.	3.8	3
326	Surface Modification of Cellulose Fibers with Hydrolases and Kinases. , 2006, , 159-180.		3
327	Assessment of a Protease Inhibitor Peptide for Anti-Ageing. Protein and Peptide Letters, 2015, 22, 1041-1049.	0.9	3
328	Folate-Targeted Liposomal Formulations Improve Effects of Methotrexate in Murine Collagen-Induced Arthritis. Biomedicines, 2022, 10, 229.	3.2	3
329	Peptide structure: Its effect on penetration into human hair. Journal of Cosmetic Science, 2007, 58, 339-46.	0.1	3
330	New Developments of Enzymatic Treatments on Cellulosic Fibers. ACS Symposium Series, 2007, , 186-192.	0.5	2
331	Design and engineering of novel enzymes for textile applications. , 2010, , 3-31.		2
332	Characterization of ligno-cellulosic materials bleached with oxo-diperoxo-molybdates. Carbohydrate Polymers, 2013, 98, 490-494.	10.2	2
333	Sonochemically-induced spectral shift as a probe of green fluorescent protein release from nano capsules. RSC Advances, 2014, 4, 10303-10309.	3 . 6	2
334	Orange IV stabilizes silk fibroin microemulsions. Engineering in Life Sciences, 2015, 15, 400-409.	3.6	2
335	Biosynthesis of polyesters and their application on cellulosic fibers. , 2019, , 49-75.		2
336	$\hat{l}\pm$ -Chymotrypsin catalysed oligopeptide synthesis for hair modelling. Journal of Cleaner Production, 2019, 237, 117743.	9.3	2
337	Design of a chromogenic substrate for elastase based on split GFP systemâ€"Proof of concept for colour switch sensors. Biotechnology Reports (Amsterdam, Netherlands), 2019, 22, e00324.	4.4	2
338	The comfort properties of cosmeto-textiles functionalized with protein-based nanoemulsions encapsulating Vitamin-E. Journal of Natural Fibers, 0, , 1-13.	3.1	2
339	Comparing the delivery to the hair bulb of two fluorescent molecules of distinct hydrophilicities by different nanoparticles and a serum formulation. International Journal of Pharmaceutics, 2021, 602, 120653.	5.2	2
340	Protein interactions in enzymatic processes in textiles. Electronic Journal of Biotechnology, 2003, 6, .	2.2	2
341	Development of Capacitive-Type Sensors by Electrochemical Anodization: Humidity and Touch Sensing Applications. Sensors, 2021, 21, 7317.	3.8	2
342	Antimicrobial Properties of Composites of Chitosan-Silver Doped Zeolites. Journal of Nanoscience and Nanotechnology, 2020, 20, 6295-6304.	0.9	2

#	Article	IF	Citations
343	Enzymes in fibre processing. Biocatalysis and Biotransformation, 2004, 22, 297-297.	2.0	1
344	MALDI-TOF Mass Spectrometry in Textile Industry. NATO Science for Peace and Security Series A: Chemistry and Biology, 2008, , 193-203.	0.5	1
345	Decolourization of paprika dye effluent with hydrogen peroxide produced by glucose oxidase. Biocatalysis and Biotransformation, 2012, 30, 255-259.	2.0	1
346	Hydroxylation of polypropylene using the monooxygenase mutant 139-3 from (i) Bacillus megaterium BM3 (i). Biocatalysis and Biotransformation, 2012, 30, 57-62.	2.0	1
347	The Immobilization of Polyethylene Imine Nano and Microspheres on Glass Using High Intensity Ultrasound. International Journal of Applied Ceramic Technology, 2013, 10, E267.	2.1	1
348	Absence of Light Exposure Increases Pathogenicity of Pseudomonas aeruginosa Pneumonia-Associated Clinical Isolates. Biology, 2021, 10, 837.	2.8	1
349	Dry action of Trichoderma reesei cellulases on cotton fabrics. Coloration Technology, 2000, 116, 121-125.	1.5	0
350	Editorial: Textile biotech. Biotechnology Journal, 2007, 2, 281-281.	3.5	0
351	Textile Biotechnology. Biocatalysis and Biotransformation, 2008, 26, 331-331.	2.0	0
352	Enzymatic modification of polyacrylonitrile and cellulose acetate fibres for textile and other applications., 2010,, 98-131.		0
353	Non-toxic sonochemical synthesis of surface functionalized human serum albumin nanocapsules for targeted drug delivery. New Biotechnology, 2012, 29, S228.	4.4	0
354	Antimicrobial lubricant formulations containing poly(hydroxybenzene)-trimethoprim conjugates synthesized by tyrosinase. Applied Microbiology and Biotechnology, 2015, 99, 4225-4235.	3.6	0
355	Gene Silencing by siRNA Nanoparticles Synthesized via Sonochemical Method. Journal of Nanomedicine & Nanotechnology, 2014, 05, .	1.1	0
356	Hair Styling Based on Eutectic Formulations with Peptides. ACS Sustainable Chemistry and Engineering, $0, , .$	6.7	0
357	Exploring Nanofibers and Hydrogels as Collagenase Carriers for the Development of Advanced Wound Dressings. Materials Science Forum, 0, 1063, 43-55.	0.3	0