
Takayuki Nakano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1054805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of catalytic activity by addition of chlorine in chemical vapor deposition growth of carbon nanotube forests. Carbon, 2022, 196, 391-400.	10.3	7
2	Fabrication and evaluation of rib-waveguide-type wavelength conversion devices using GaN-QPM crystals. Japanese Journal of Applied Physics, 2022, 61, SK1020.	1.5	8
3	A study on the growth enhancement effects of chlorine on carbon nanotube forest in chloride-mediated chemical vapor deposition. Japanese Journal of Applied Physics, 2021, 60, 045001.	1.5	4
4	Study on the mechanical and electrical properties of twisted CNT yarns fabricated from CNTs with various diameters. Carbon, 2021, 176, 400-410.	10.3	15
5	Effective neutron detection using vertical-type BGaN diodes. Journal of Applied Physics, 2021, 130, .	2.5	5
6	Fabrication of GaN-QPM crystals for slab waveguide type wavelength conversion devices. , 2021, , .		0
7	Excellent electromagnetic interference shielding characteristics of a unidirectionally oriented thin multiwalled carbon nanotube/polyethylene film. Materials and Design, 2020, 195, 108918.	7.0	32
8	Novel method for carbon nanotube growth using vapor-phase catalyst delivery. Functional Materials Letters, 2020, 13, 2050026.	1.2	0
9	Impact of growth temperature on the structural properties of BGaN films grown by metal-organic vapor phase epitaxy using trimethylboron. Japanese Journal of Applied Physics, 2019, 58, SC1042.	1.5	6
10	Survivability of carbon nanotubes in space. Acta Astronautica, 2019, 165, 129-138.	3.2	10
11	Two step floating catalyst chemical vapor deposition including in situ fabrication of catalyst nanoparticles and carbon nanotube forest growth with low impurity level. Carbon, 2019, 144, 152-160.	10.3	27
12	Doubleâ€Polarity Selectiveâ€Area Growth of GaN by Metalâ€Organic Vaporâ€Phase Epitaxy Using Narrowâ€Pitch Patterns. Physica Status Solidi (B): Basic Research, 2018, 255, 1700475.	1.5	8
13	Effect of substrate offcut angle on BGaN epitaxial growth. Japanese Journal of Applied Physics, 2016, 55, 05FD05.	1.5	8
14	Study of radiation detection properties of GaN pn diode. Japanese Journal of Applied Physics, 2016, 55, 05FJ02.	1.5	14
15	Embedding of copper into submicrometer trenches in a silicon substrate using the molecular precursor solutions with copper nano-powder. Materials Letters, 2016, 182, 206-209.	2.6	5
16	Analysis of interface formation mechanism in GaN double-polarity selective-area growth by metalorganic vapor phase epitaxy. Japanese Journal of Applied Physics, 2016, 55, 05FA05.	1.5	9
17	Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns. Nanotechnology, 2016, 27, 115701.	2.6	8
18	Semiconductor Thermal Neutron Detector. MAKARA of Technology Series, 2014, 17, .	0.0	0

Τακαγυκι Νακανο

#	Article	IF	CITATIONS
19	Neutron detection using boron gallium nitride semiconductor material. APL Materials, 2014, 2, .	5.1	24
20	Tensile mechanical properties of carbon nanotube/epoxy composite fabricated by pultrusion of carbon nanotube spun yarn preform. Composites Part A: Applied Science and Manufacturing, 2014, 62, 32-38.	7.6	49
21	Study of Growth Enhancement of Multiwalled Carbon Nanotubes by Chlorine-Assisted Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2013, 52, 035202.	1.5	10
22	Double-Polarity Selective Area Growth of GaN Metal Organic Vapor Phase Epitaxy by Using Carbon Mask Layers. Japanese Journal of Applied Physics, 2013, 52, 08JB26.	1.5	8
23	Control of In Surface Segregation and Inter-Diffusion in GaAs on InGaP Grown by Metal–Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 055601.	1.5	2
24	Precise structure control of GaAs/InGaP hetero-interfaces using metal organic vapor phase epitaxy and its abruptness analyzed by STEM. Journal of Crystal Growth, 2012, 347, 25-30.	1.5	4
25	Control of In Surface Segregation and Inter-Diffusion in GaAs on InGaP Grown by Metal–Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 055601.	1.5	Ο
26	Seebeck Effects and Electronic Thermal Conductivity of IV–VI Materials. Japanese Journal of Applied Physics, 2011, 50, 031302.	1.5	5
27	Fabrication and Performance of Photocatalytic GaN Powders. Advanced Materials Research, 2011, 222, 142-145.	0.3	2
28	Characterization of Indium Segregation in Metalorganic Vapor Phase Epitaxy-Grown InGaP by Schottky Barrier Height Measurement. Japanese Journal of Applied Physics, 2011, 50, 011201.	1.5	0
29	Characterization of Indium Segregation in Metalorganic Vapor Phase Epitaxy-Grown InGaP by Schottky Barrier Height Measurement. Japanese Journal of Applied Physics, 2011, 50, 011201.	1.5	1
30	Fabrication and hard X-ray photoemission analysis of photocathodes with sharp solar-blind sensitivity using AlGaN films grown on Si substrates. Applied Surface Science, 2010, 256, 4442-4446.	6.1	43
31	Competitive Kinetics Model to Explain Surface Segregation of Indium during InGaP Growth by Using Metal Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2009, 48, 011101.	1.5	5
32	Lateral Polarity Control in GaN Based on Selective Growth Procedure Using Carbon Mask Layers. Applied Physics Express, 2009, 2, 101001.	2.4	10
33	Epitaxial growth of GaN on single-crystal Mo substrates using HfN buffer layers. Journal of Crystal Growth, 2009, 311, 1311-1315.	1.5	20
34	Epitaxial growth of high purity cubic InN films on MgO substrates using HfN buffer layers by pulsed laser deposition. Journal of Solid State Chemistry, 2009, 182, 2887-2889.	2.9	5
35	Epitaxial growth of AlN on single crystal Mo substrates. Thin Solid Films, 2008, 516, 4809-4812.	1.8	16
36	Kinetics of Subsurface Formation during Metal–Organic Vapor Phase Epitaxy Growth of InP and InGaP. Japanese Journal of Applied Physics, 2008, 47, 1473-1478.	1.5	7

Τακαγυκι Νακανό

#	Article	IF	CITATIONS
37	Abrupt InGaPâ^•GaAs heterointerface grown by optimized gas-switching sequence in metal organic vapor phase epitaxy. Applied Physics Letters, 2008, 92, 112106.	3.3	17
38	Epitaxial growth of AlN films on Rh ultraviolet mirrors. Applied Physics Letters, 2007, 91, 131910.	3.3	9
39	Growth of single crystalline GaN on silver mirrors. Applied Physics Letters, 2007, 91, 201920.	3.3	24
40	Kinetic Analysis of Surface Adsorption Layer in GaAs(001) Metalorganic Vapor Phase Epitaxy byIn situReflectance Anisotropy Spectroscopy. Japanese Journal of Applied Physics, 2007, 46, 6519-6524.	1.5	3
41	High-resolution depth profile of the InGaP-on-GaAs heterointerface by FE-AES and its relationship to device properties. Journal of Crystal Growth, 2007, 298, 85-89.	1.5	5
42	Control of abnormal edge growth in selective area MOVPE of InP. Journal of Crystal Growth, 2006, 287, 668-672.	1.5	14
43	Novel gas-switching sequence using group-III pre-flow (GIIIP) method for fabrication of InGaP on GaAs hetero-interface by MOVPE. Journal of Crystal Growth, 2006, 296, 179-185.	1.5	8
44	Characteristics of single crystalline AlN films grown on Ru(0001) substrates. Journal of Crystal Growth, 2006, 297, 317-320.	1.5	10
45	Role of surface diffusion during selective area MOVPE growth of InP. Thin Solid Films, 2006, 498, 163-166.	1.8	5
46	The role of the surface adsorption layer during MOVPE growth analyzed by the flow modulation method. Journal of Crystal Growth, 2004, 272, 15-23.	1.5	9
47	Kinetic ellipsometry measurement of InGaP/GaAs hetero-interface formation in MOVPE. Journal of Crystal Growth, 2000, 221, 136-141.	1.5	18
48	Fabrication and optical characterization of GaN quasi-phase matching crystal by double polarity selective area growth in metal organic vapor phase epitaxy. Functional Materials Letters, 0, , .	1.2	2
49	Diamond Radiation Detector with Builtâ€In Boronâ€Doped Neutron Converter Layer. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100315.	1.8	1