Fathey Sarhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10546265/publications.pdf

Version: 2024-02-01

76326 102487 5,899 67 40 66 citations h-index g-index papers 67 67 67 4976 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Energy balance and acclimation to light and cold. Trends in Plant Science, 1998, 3, 224-230.	8.8	876
2	Accumulation of an Acidic Dehydrin in the Vicinity of the Plasma Membrane during Cold Acclimation of Wheat. Plant Cell, 1998, 10, 623-638.	6.6	379
3	TaVRT-1, a Putative Transcription Factor Associated with Vegetative to Reproductive Transition in Cereals. Plant Physiology, 2003, 132, 1849-1860.	4.8	361
4	Cloning, Characterization, and Expression of a cDNA Encoding a 50-Kilodalton Protein Specifically Induced by Cold Acclimation in Wheat. Plant Physiology, 1992, 99, 1381-1387.	4.8	218
5	Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant Journal, 1995, 8, 583-593.	5.7	215
6	Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnology Journal, 2004, 2, 381-387.	8.3	182
7	Cold-Regulated Cereal Chloroplast Late Embryogenesis Abundant-Like Proteins. Molecular Characterization and Functional Analyses. Plant Physiology, 2002, 129, 1368-1381.	4.8	175
8	Chitinase Genes Responsive to Cold Encode Antifreeze Proteins in Winter Cereals. Plant Physiology, 2000, 124, 1251-1264.	4.8	166
9	The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Molecular Genetics and Genomics, 2007, 277, 533-554.	2.1	148
10	Expression Profiling and Bioinformatic Analyses of a Novel Stress-Regulated Multispanning Transmembrane Protein Family from Cereals and Arabidopsis,. Plant Physiology, 2003, 132, 64-74.	4.8	134
11	Photoperiod and Temperature Interactions Regulate Low-Temperature-Induced Gene Expression in Barley. Plant Physiology, 2001, 127, 1676-1681.	4.8	126
12	Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Molecular Biology, 2007, 63, 703-718.	3.9	126
13	Structure and Functional Analysis of Wheat ICE (Inducer of CBF Expression) Genes. Plant and Cell Physiology, 2008, 49, 1237-1249.	3.1	124
14	TaVRT-2, a Member of the StMADS-11 Clade of Flowering Repressors, Is Regulated by Vernalization and Photoperiod in Wheat. Plant Physiology, 2005, 138, 2354-2363.	4.8	122
15	A molecular marker to select for freezing tolerance in Gramineae. Molecular Genetics and Genomics, 1992, 234, 43-48.	2.4	121
16	Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Letters, 1994, 344, 20-24.	2.8	117
17	ldentification, Expression, and Evolutionary Analyses of Plant Lipocalins. Plant Physiology, 2005, 139, 2017-2028.	4.8	110
18	The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. Physiologia Plantarum, 1997, 101, 439-445.	5.2	106

#	Article	IF	Citations
19	The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biology, 2008, 8, 86.	3.6	103
20	Wheat EST resources for functional genomics of abiotic stress. BMC Genomics, 2006, 7, 149.	2.8	100
21	Synthesis of Freezing Tolerance Proteins in Leaves, Crown, and Roots during Cold Acclimation of Wheat. Plant Physiology, 1989, 89, 577-585.	4.8	98
22	The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Letters, 1998, 423, 324-328.	2.8	98
23	Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Molecular Biology, 2007, 64, 409-423.	3.9	96
24	Transcriptome comparison of winter and spring wheat responding to low temperature. Genome, 2005, 48, 913-923.	2.0	95
25	Energy balance, organellar redox status, and acclimation to environmental stress. Canadian Journal of Botany, 2006, 84, 1355-1370.	1.1	95
26	Regulation of a Wheat Actin-Depolymerizing Factor during Cold Acclimation. Plant Physiology, 2001, 125, 360-368.	4.8	94
27	TaVRT2 represses transcription of the wheat vernalization gene TaVRN1. Plant Journal, 2007, 51, 670-680.	5 . 7	77
28	A leaf-specific gene stimulated by light during wheat acclimation to low temperature. Plant Molecular Biology, 1993, 23, 255-265.	3.9	72
29	Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis. FEBS Letters, 2002, 517, 129-132.	2.8	69
30	Molecular and Biochemical Characterization of a Cold-Regulated PhosphoethanolamineN-Methyltransferase from Wheat. Plant Physiology, 2002, 129, 363-373.	4.8	64
31	Survey of gene expression in winter rye during changes in growth temperature, irradiance or excitation pressure. Plant Molecular Biology, 2001, 45, 691-703.	3.9	59
32	Molecular Characterization and Origin of Novel Bipartite Cold-regulated Ice Recrystallization Inhibition Proteins from Cereals. Plant and Cell Physiology, 2005, 46, 884-891.	3.1	59
33	Biotechnological applications of plant freezing associated proteins. Biotechnology Annual Review, 2000, 6, 59-101.	2.1	57
34	The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and <i>Brassica napus</i> . Physiologia Plantarum, 2012, 144, 169-188.	5.2	55
35	Transcriptomic Insights into Phenological Development and Cold Tolerance of Wheat Grown in the Field. Plant Physiology, 2018, 176, 2376-2394.	4.8	55
36	Energy state of spring and winter wheat during cold hardening. Soluble sugars and adenine nucleotides. Physiologia Plantarum, 1984, 60, 129-132.	5.2	53

#	Article	IF	CITATIONS
37	Winter wheat hull (husk) is a valuable source for tricin, a potential selective cytotoxic agent. Food Chemistry, 2013, 138, 931-937.	8.2	51
38	Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation. Molecular Genetics and Genomics, 2012, 287, 575-590.	2.1	50
39	Changes in wheat leaf phenolome in response to cold acclimation. Phytochemistry, 2011, 72, 2294-2307.	2.9	49
40	Identification and characterization of a low temperature regulated gene encoding an actin-binding protein from wheat. FEBS Letters, 1996, 389, 324-327.	2.8	46
41	Accumulation of an Acidic Dehydrin in the Vicinity of the Plasma Membrane during Cold Acclimation of Wheat. Plant Cell, 1998, 10, 623.	6.6	36
42	Daphnetin Methylation by a Novel O-Methyltransferase Is Associated with Cold Acclimation and Photosystem II Excitation Pressure in Rye. Journal of Biological Chemistry, 2003, 278, 6854-6861.	3.4	35
43	Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat. Journal of Experimental Botany, 2014, 65, 2271-2286.	4.8	35
44	Engineering cold-tolerant cropsâ€"throwing the master switch. Trends in Plant Science, 1998, 3, 289-290.	8.8	32
45	Gene Expression during Cold Acclimation in Strawberry. Plant and Cell Physiology, 1997, 38, 863-870.	3.1	28
46	Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid. Frontiers in Chemistry, 2014, 2, 18.	3.6	28
47	Overexpression of TaVRN1 in Arabidopsis Promotes Early Flowering and Alters Development. Plant and Cell Physiology, 2007, 48, 1192-1206.	3.1	27
48	Regulation of RNA Synthesis by DNA-Dependent RNA Polymerases and RNases during Cold Acclimation in Winter and Spring Wheat. Plant Physiology, 1985, 78, 250-255.	4.8	26
49	Long-Term Growth Under Elevated CO2 Suppresses Biotic Stress Genes in Non-Acclimated, But Not Cold-Acclimated Winter Wheat. Plant and Cell Physiology, 2013, 54, 1751-1768.	3.1	26
50	An integrative approach to identify hexaploid wheat miRNAome associated with development and tolerance to abiotic stress. BMC Genomics, 2015, 16, 339.	2.8	25
51	Gene expression during cold and heat shock in wheat. Biochemistry and Cell Biology, 1991, 69, 383-391.	2.0	23
52	Wheat extracts as an efficient cryoprotective agent for primary cultures of rat hepatocytes. Biotechnology and Bioengineering, 2006, 95, 661-670.	3.3	22
53	Flagellin produced in plants is a potent adjuvant for oral immunization. Vaccine, 2011, 29, 6695-6703.	3.8	18
54	Wheat proteins improve cryopreservation of rat hepatocytes. Biotechnology and Bioengineering, 2009, 103, 582-591.	3.3	16

#	Article	IF	CITATIONS
55	Heterologous Expression of Wheat VERNALIZATION 2 (TaVRN2) Gene in Arabidopsis Delays Flowering and Enhances Freezing Tolerance. PLoS ONE, 2010, 5, e8690.	2.5	16
56	Tricin biosynthesis during growth of wheat under different abiotic stresses. Plant Science, 2013, 201-202, 115-120.	3.6	16
57	Wheat Proteins Enhance Stability and Function of Adhesion Molecules in Cryopreserved Hepatocytes. Cell Transplantation, 2009, 18, 79-88.	2.5	15
58	Cold acclimation inhibits CO ₂ -dependent stimulation of photosynthesis in spring wheat and spring rye. Botany, 2012, 90, 433-444.	1.0	15
59	Metabolic Activity of Cytochrome P450 Isoforms in Hepatocytes Cryopreserved with Wheat Protein Extract. Drug Metabolism and Disposition, 2008, 36, 2121-2129.	3.3	14
60	Enhancing biomass production and yield by maintaining enhanced capacity for CO2 uptake in response to elevated CO2. Canadian Journal of Plant Science, 2014, 94, 1075-1083.	0.9	12
61	Genomeâ€Wide Identification and Characterization of the Wheat Remorin (Ta REM) Family during Cold Acclimation. Plant Genome, 2019, 12, 180040.	2.8	11
62	Production of Human Rotavirus and Salmonella Antigens in Plants and Elicitation of fljB-Specific Humoral Responses in Mice. Molecular Biotechnology, 2011, 47, 157-168.	2.4	7
63	Cryopreservation of insulin-secreting INS832/13 cells using a wheat protein formulation. Cryobiology, 2013, 66, 136-143.	0.7	7
64	Effect of Ozone on Energy Metabolism and its Relation to Carbon Dioxide Fixation in Euglena gracilis. Journal of Plant Physiology, 1992, 140, 521-526.	3.5	4
65	Selective anticancer potential of several methylated phenolic compounds. Journal of Natural Pharmaceuticals, 2013, 4, 75.	0.8	2
66	Daphnetin methylation stabilizes the activity of phosphoribulokinase in wheat during cold acclimation. Biochemistry and Cell Biology, 2012, 90, 657-666.	2.0	1
67	Regulation of Cold Acclimation. , 1997, , 181-190.		1