Zhong-Ming Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1054469/publications.pdf

Version: 2024-02-01

362	18,644	72	117
papers	citations	h-index	g-index
365	365	365	11493
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Natural cellulose supported carbon nanotubes and Fe3O4 NPs as the efficient peroxydisulfate activator for the removal of bisphenol A: An enhanced non-radical oxidation process. Journal of Hazardous Materials, 2022, 423, 127054.	12.4	25
2	Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading. Journal of Materials Science and Technology, 2022, 102, 115-122.	10.7	37
3	Ultra-slippery, nonirritating, and anti-inflammatory hyaluronic acid-based coating to mitigate intubation injury. Chemical Engineering Journal, 2022, 427, 130911.	12.7	11
4	Facile fabrication of highly durable superhydrophobic strain sensors for subtle human motion detection. Journal of Materials Science and Technology, 2022, 110, 35-42.	10.7	17
5	Topographic Cues Guiding Cell Polarization via Distinct Cellular Mechanosensing Pathways. Small, 2022, 18, e2104328.	10.0	40
6	Insight into the Excellent Tribological Performance of Highly Oriented Poly(phenylene sulfide). Chinese Journal of Polymer Science (English Edition), 2022, 40, 290-298.	3.8	3
7	Mucosaâ€Like Conformal Hydrogel Coating for Aqueous Lubrication. Advanced Materials, 2022, 34, e2108848.	21.0	37
8	Effective electromagnetic interference shielding properties of micro-truss structured CNT/Epoxy composites fabricated based on visible light processing. Composites Science and Technology, 2022, 221, 109296.	7.8	20
9	In-situ constructing robust cellulose nanocomposite hydrogel network with well-dispersed dual catalysts for the efficient, stable and recyclable photo-Fenton degradation. Cellulose, 2022, 29, 1929-1942.	4.9	8
10	Synergistically Improved Oxygen Barrier Properties of Polyethylene Terephthalate by Combining "Active―and "Passive―Barrier Techniques. Macromolecular Materials and Engineering, 2022, 307, .	3.6	4
11	Interfacial Banded Transcrystallization of Polyoxymethylene/Poly(butylene succinate) Blends Induced by the Polyamide 6 Fiber. Chinese Journal of Polymer Science (English Edition), 2022, 40, 394-402.	3.8	1
12	Enhanced Dielectric and Ferroelectric Properties of Poly(vinylidene fluoride) through Annealing Oriented Crystallites under High Pressure. Macromolecules, 2022, 55, 2014-2027.	4.8	42
13	Quantitative Investigation on Structural Evolution of Co-continuous Phase under Shear Flow. Chinese Journal of Polymer Science (English Edition), 2022, 40, 593-601.	3.8	3
14	Low-voltage and controllable-developed actuator with bilayer structure based on triple-shape actuation. Composites Science and Technology, 2022, 222, 109399.	7.8	7
15	Flexible andWater-proof nylon mesh with ultralow silver content for effective electromagnetic interference shielding effectiveness. Chemical Engineering Journal, 2022, 439, 135662.	12.7	8
16	Dynamic chemical bonds design strategy for fabricating fast room-temperature healable dielectric elastomer with significantly improved actuation performance. Chemical Engineering Journal, 2022, 439, 135683.	12.7	16
17	CNT-assisted design of stable liquid metal droplets for flexible multifunctional composites. Composites Part B: Engineering, 2022, 239, 109961.	12.0	40
18	Imparting Cellulose Acetate Films with Hydrophobicity, High Transparency, and Self-Cleaning Function by Constructing a Slippery Liquid-Infused Porous Surface. Industrial & Engineering Chemistry Research, 2022, 61, 7962-7970.	3.7	7

#	Article	IF	Citations
19	Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption. Nano Research, 2022, 15, 7723-7730.	10.4	28
20	Promoted Formation of $\hat{l}\pm$ Crystals in the Polymorph Selection of Syndiotatic Polystyrene under the Coupling of Pressure, Flow, and Temperature. Macromolecules, 2022, 55, 5094-5103.	4.8	2
21	Dual-functional thermal management materials for highly thermal conduction and effectively heat generation. Composites Part B: Engineering, 2022, 242, 110084.	12.0	27
22	Superior Ductile and High-barrier Poly(lactic acid) Films by Constructing Oriented Nanocrystals as Efficient Reinforcement of Chain Entanglement Network and Promising Barrier Wall. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1201-1212.	3.8	9
23	Nanotopographical 3D-Printed Poly(ε-caprolactone) Scaffolds Enhance Proliferation and Osteogenic Differentiation of Urine-Derived Stem Cells for Bone Regeneration. Pharmaceutics, 2022, 14, 1437.	4.5	14
24	How the Aggregates Determine Bound Rubber Models in Silicone Rubber? A Contrast Matching Neutron Scattering Study. Chinese Journal of Polymer Science (English Edition), 2021, 39, 365-376.	3.8	10
25	Structural regulation of poly(urea-formaldehyde) microcapsules containing lube base oil and their thermal properties. Progress in Organic Coatings, 2021, 150, 105990.	3.9	11
26	3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance. Materials and Design, 2021, 197, 109222.	7.0	63
27	Durably Ductile, Transparent Polystyrene Based on Extensional Stress-Induced Rejuvenation Stabilized by Styrene–Butadiene Block Copolymer Nanofibrils. ACS Macro Letters, 2021, 10, 71-77.	4.8	12
28	Polyphenol-Assisted Chemical Crosslinking: A New Strategy to Achieve Highly Crosslinked, Antioxidative, and Antibacterial Ultrahigh-Molecular-Weight Polyethylene for Total Joint Replacement. ACS Biomaterials Science and Engineering, 2021, 7, 373-381.	5.2	10
29	Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. Journal of Materials Chemistry C, 2021, 9, 2904-2911.	5.5	110
30	Ultrathin, flexible and sandwich-structured PHBV/silver nanowire films for high-efficiency electromagnetic interference shielding. Journal of Materials Chemistry C, 2021, 9, 3307-3315.	5.5	34
31	Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure \hat{l}^2 crystals. Nature Communications, 2021, 12, 675.	12.8	85
32	Simultaneously constructing nanotopographical and chemical cues in 3D-printed polylactic acid scaffolds to promote bone regeneration. Materials Science and Engineering C, 2021, 118, 111457.	7.3	21
33	Rapid Melt Crystallization of Bisphenol-A Polycarbonate Jointly Induced by Pressure and Flow. Macromolecules, 2021, 54, 2383-2393.	4.8	17
34	Superhydrophobic, Self-Cleaning, and Robust Properties of Oriented Polylactide Imparted by Surface Structuring. ACS Sustainable Chemistry and Engineering, 2021, 9, 6296-6304.	6.7	21
35	Coupling effect of pressure and flow fields on the crystallization of Poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /C	Overlock 1	0 Tf 50 102
36	Imparting Gradient and Oriented Characters to Cocontinuous Structure for Improving Integrated Performance. Macromolecular Chemistry and Physics, 2021, 222, 2100012.	2.2	7

#	Article	IF	CITATIONS
37	Multifunctional Membrane for Thermal Management Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19301-19311.	8.0	36
38	Highly Thermally Conductive Graphene-Based Thermal Interface Materials with a Bilayer Structure for Central Processing Unit Cooling. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25325-25333.	8.0	39
39	Simultaneous enhancement of breakdown strength and discharged energy efficiency of tri-layered polymer nanocomposite films by incorporating modified graphene oxide nanosheets. Journal of Materials Science, 2021, 56, 13165.	3.7	6
40	Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption. Composites Science and Technology, 2021, 212, 108848.	7.8	28
41	Controlled bacteriostasis of tea polyphenol loaded ultrahigh molecular weight polyethylene with high crosslink density and oxidation resistance for total joint replacement. Materials Science and Engineering C, 2021, 124, 112040.	7. 3	11
42	Fabrication of Highly Anisotropic and Interconnected Porous Scaffolds to Promote Preosteoblast Proliferation for Bone Tissue Engineering. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1191-1199.	3.8	4
43	Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon, 2021, 176, 118-125.	10.3	122
44	Ultrahigh molecular weight polyethylene with improved crosslink density, oxidation stability, and microbial inhibition by chemical crosslinking and tea polyphenols for total joint replacements. Journal of Applied Polymer Science, 2021, 138, 51261.	2.6	2
45	Highly Thermally Conductive Fluorinated Graphene/Aramid Nanofiber Films with Superior Mechanical Properties and Thermostability. Industrial & Engineering Chemistry Research, 2021, 60, 8451-8459.	3.7	17
46	Synergy between vitamin E and D-sorbitol in enhancing oxidation stability of highly crosslinked ultrahigh molecular weight polyethylene. Acta Biomaterialia, 2021, 134, 302-312.	8.3	9
47	Flexible Poly(vinylidene fluoride)-MXene/Silver Nanowire Electromagnetic Shielding Films with Joule Heating Performance. Industrial & Engineering Chemistry Research, 2021, 60, 9824-9832.	3.7	38
48	Environmentally friendly regenerated cellulose films with improved dielectric properties via manipulating the hydrogen bonding network. Applied Physics Letters, 2021, 119, .	3.3	9
49	Green Production of Covalently Functionalized Boron Nitride Nanosheets via Saccharide-Assisted Mechanochemical Exfoliation. ACS Sustainable Chemistry and Engineering, 2021, 9, 11155-11162.	6.7	23
50	A Healable and Mechanically Enhanced Composite with Segregated Conductive Network Structure for High-Efficient Electromagnetic Interference Shielding. Nano-Micro Letters, 2021, 13, 162.	27.0	62
51	Low-Voltage Actuator with Bilayer Structure for Various Biomimetic Locomotions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43449-43457.	8.0	11
52	Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Composites Part B: Engineering, 2021, 220, 108985.	12.0	95
53	Coupling Effect of Mechanical and Thermal Rejuvenation for Polystyrene: Toward High Performance of Stiffness, Ductility, and Transparency. Macromolecules, 2021, 54, 8875-8885.	4.8	11
54	Constructing robust chain entanglement network, well-defined nanosized crystals and highly aligned graphene oxide nanosheets: Towards strong, ductile and high barrier Poly(lactic acid) nanocomposite films for green packaging. Composites Part B: Engineering, 2021, 222, 109048.	12.0	29

#	Article	IF	CITATIONS
55	Carbonized cotton textile with hierarchical structure for superhydrophobicity and efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106555.	7.6	28
56	Highly stretchable and durable fibrous strain sensor with growth ring-like spiral structure for wearable electronics. Composites Part B: Engineering, 2021, 225, 109275.	12.0	27
57	A wearable multifunctional fabric with excellent electromagnetic interference shielding and passive radiation heating performance. Composites Part B: Engineering, 2021, 225, 109299.	12.0	44
58	Facile heteroatom doping of biomass-derived carbon aerogels with hierarchically porous architecture and hybrid conductive network: Towards high electromagnetic interference shielding effectiveness and high absorption coefficient. Composites Part B: Engineering, 2021, 224, 109175.	12.0	50
59	Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding. Chemical Engineering Journal, 2021, 426, 131288.	12.7	44
60	Superior actuation performance and healability achieved in a transparent, highly stretchable dielectric elastomer film. Journal of Materials Chemistry C, 2021, 9, 12239-12247.	5.5	13
61	Room-temperature repeatedly processable baroplastic/boron nitride thermal management composite. Journal of Materials Chemistry C, 2021, 9, 10388-10397.	5.5	2
62	Tribological Properties of Self-Lubricating Thermoplastic Polyurethane/Oil-Loaded Microcapsule Composites Based on Melt Processing. Industrial & Engineering Chemistry Research, 2021, 60, 16023-16031.	3.7	4
63	Transparent radiative cooling films containing poly(methylmethacrylate), silica, and silver. Optical Materials, 2021, 122, 111651.	3.6	21
64	Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chemical Engineering Journal, 2020, 384, 123368.	12.7	86
65	Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management. Composites Part B: Engineering, 2020, 180, 107569.	12.0	114
66	Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105738.	7.6	62
67	Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105692.	7.6	177
68	Insights into Oxidation of the Ultrahigh Molecular Weight Polyethylene Artificial Joint Related to Lipid Peroxidation. ACS Applied Bio Materials, 2020, 3, 547-553.	4.6	9
69	Understanding the Morphological and Structural Evolution of α- and γ-Poly(vinylidene fluoride) During High Temperature Uniaxial Stretching by In Situ Synchrotron X-ray Scattering. Industrial & Samp; Engineering Chemistry Research, 2020, 59, 18567-18578.	3.7	5
70	Highly improved aqueous lubrication of polymer surface by noncovalently bonding hyaluronic acid-based hydration layer for endotracheal intubation. Biomaterials, 2020, 262, 120336.	11.4	19
71	Antibacterial and anti-inflammatory ultrahigh molecular weight polyethylene/tea polyphenol blends for artificial joint applications. Journal of Materials Chemistry B, 2020, 8, 10428-10438.	5.8	21
72	An electrically conductive polymer composite with a co-continuous segregated structure for enhanced mechanical performance. Journal of Materials Chemistry C, 2020, 8, 11546-11554.	5.5	40

#	Article	IF	CITATIONS
73	Stretchable Liquid Metal-Based Conductive Textile for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 53230-53238.	8.0	85
74	Nondestructive and Quantitative Characterization of Bulk Injection-Molded Polylactide Using SAXS Microtomography. Macromolecules, 2020, 53, 6498-6509.	4.8	13
75	Steric stabilizer-based promotion of uniform polyaniline shell for enhanced electromagnetic wave absorption of carbon nanotube/polyaniline hybrids. Composites Part B: Engineering, 2020, 199, 108309.	12.0	36
76	Tuning wettability and mechanical property of polylactide composite films with in-situ nanofibrils of poly(butylene adipate-co-terephthalate). Composites Communications, 2020, 22, 100515.	6.3	12
77	Hybrid Metamaterial Textiles for Passive Personal Cooling Indoors and Outdoors. ACS Applied Polymer Materials, 2020, 2, 4379-4386.	4.4	35
78	Healable polyurethane/carbon nanotube composite with segregated structure for efficient electromagnetic interference shielding. Composites Science and Technology, 2020, 200, 108446.	7.8	41
79	Effects of Rigid Amorphous Fraction and Lamellar Crystal Orientation on Electrical Insulation of Poly(ethylene terephthalate) Films. Macromolecules, 2020, 53, 3967-3977.	4.8	34
80	Significantly improved high-temperature performance of polymer dielectric via building nanosheets and confined space. Composites Part B: Engineering, 2020, 196, 108108.	12.0	22
81	Structure and Properties of All-Cellulose Composites Prepared by Controlling the Dissolution Temperature of a NaOH/Urea Solvent. Industrial & Engineering Chemistry Research, 2020, 59, 10428-10435.	3.7	17
82	Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption. Carbon, 2020, 167, 530-540.	10.3	80
83	Tailored Surface Porosity of Polyethylene-Based Co-continuous Structures for Moving Bed Biofilm Reactor Carriers. ACS Applied Polymer Materials, 2020, 2, 3226-3233.	4.4	4
84	Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance. Composites Science and Technology, 2020, 197, 108253.	7.8	62
85	A Scalable Hybrid Fiber and Its Textile with Pore and Wrinkle Structures for Passive Personal Cooling. Advanced Materials Technologies, 2020, 5, 2000287.	5.8	33
86	Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core. Chemical Engineering Journal, 2020, 393, 124644.	12.7	87
87	Highly Efficient Three-Dimensional Gas Barrier Network for Biodegradable Nanocomposite Films at Extremely Low Loading Levels of Graphene Oxide Nanosheets. Industrial & Engineering Chemistry Research, 2020, 59, 5818-5827.	3.7	16
88	Facile Construction of a Superhydrophobic Surface on a Textile with Excellent Electrical Conductivity and Stretchability. Industrial & Engineering Chemistry Research, 2020, 59, 7546-7553.	3.7	25
89	Structuring Hierarchically Porous Architecture in Biomass-Derived Carbon Aerogels for Simultaneously Achieving High Electromagnetic Interference Shielding Effectiveness and High Absorption Coefficient. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18840-18849.	8.0	102
90	Spatial dependence of ordering process in bulk materials of polylactide and its multiple system during hygrothermal aging. Polymer Degradation and Stability, 2020, 174, 109107.	5.8	5

#	Article	IF	Citations
91	Surface-Directed Self-Epitaxial Crystallization of Poly(ε-caprolactone) from Isotropic to Highly Orientated Lamellae. Macromolecules, 2020, 53, 1736-1744.	4.8	10
92	Polylactide porous biocomposites with high heat resistance by utilizing cellulose template-directed construction. Cellulose, 2020, 27, 3805-3819.	4.9	7
93	Lightweight and Robust Carbon Nanotube/Polyimide Foam for Efficient and Heat-Resistant Electromagnetic Interference Shielding and Microwave Absorption. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8704-8712.	8.0	227
94	Self-healing and flexible carbon nanotube/polyurethane composite for efficient electromagnetic interference shielding. Composites Part B: Engineering, 2020, 193, 108015.	12.0	100
95	Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. Journal of Materials Chemistry A, 2020, 8, 9146-9159.	10.3	196
96	Achieving excellent thermally conductive and electromagnetic shielding performance by nondestructive functionalization and oriented arrangement of carbon nanotubes in composite films. Composites Science and Technology, 2020, 194, 108190.	7.8	59
97	Better Choice: Linear Long Chains Rather than Branched Ones to Improve Mechanical Performance of Polyethylene through Generating Shish-Kebabs. Chinese Journal of Polymer Science (English Edition), 2020, 38, 715-729.	3.8	4
98	Humidity sensitive cellulose composite aerogels with enhanced mechanical performance. Cellulose, 2020, 27, 6287-6297.	4.9	13
99	Baroplastics with Ultrahigh Strength and Modulus via Hydrogen-Bonding Interactions with Agar. ACS Applied Polymer Materials, 2020, 2, 5550-5557.	4.4	1
100	A reliable and highly conductive carbon nanotube/thermoplastic polyurethane composite with an enhanced segregated structure for electrically driven heater applications. Journal of Materials Chemistry C, 2020, 8, 8814-8822.	5.5	17
101	High thermal conductivity of chain-aligned bulk linear ultra-high molecular weight polyethylene. Journal of Applied Physics, 2019, 125, .	2.5	15
102	Role of lamellar thickening in thick lamellae formation in isotactic polypropylene when crystallizing under flow and pressure. Polymer, 2019, 179, 121641.	3.8	7
103	Extensional Stress-Induced Orientation and Crystallization can Regulate the Balance of Toughness and Stiffness of Polylactide Films: Interplay of Oriented Amorphous Chains and Crystallites. Macromolecules, 2019, 52, 5278-5288.	4.8	79
104	PVDF/PMMA dielectric films with notably decreased dielectric loss and enhanced highâ€temperature tolerance. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1043-1052.	2.1	31
105	Highly thermally conductive and mechanically robust composite of linear ultrahigh molecular weight polyethylene and boron nitride via constructing nacre-like structure. Composites Science and Technology, 2019, 184, 107858.	7.8	42
106	Surface Epitaxial Crystallization-Directed Nanotopography for Accelerating Preosteoblast Proliferation and Osteogenic Differentiation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42956-42963.	8.0	12
107	Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network. ACS Applied Materials & Description (2019), 11, 37094-37102.	8.0	116
108	Unique Banded Cylindrites of Polyoxymethylene/Poly(butylene succinate) Blends Induced by Interfacial Shear. ACS Applied Polymer Materials, 2019, 1, 2741-2750.	4.4	4

#	Article	IF	CITATIONS
109	Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecular weight polyethylene bulk material. Polymer, 2019, 180, 121760.	3.8	25
110	Robust cellulose nanocomposite films based on covalently cross-linked network with effective resistance to water permeability. Carbohydrate Polymers, 2019, 211, 237-248.	10.2	15
111	Interconnected Microdomain Structure of a Cross-Linked Cellulose Nanocomposite Revealed by Micro-Raman Imaging and Its Influence on Water Permeability of a Film. Biomacromolecules, 2019, 20, 2754-2762.	5.4	6
112	Enhanced thermal conductivity of multilayered sheets of polyethylene and boron nitride via promoting molecular diffusion between layers. Journal of Applied Physics, 2019, 125, .	2.5	8
113	Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Composites Science and Technology, 2019, 181, 107695.	7.8	83
114	Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications. Journal of Materials Chemistry C, 2019, 7, 9018-9024.	5 . 5	79
115	Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon, 2019, 152, 316-324.	10.3	76
116	Highly Sensitive and Stretchable Polyurethane Fiber Strain Sensors with Embedded Silver Nanowires. ACS Applied Materials & Diterfaces, 2019, 11, 23649-23658.	8.0	122
117	Polydopamine-Assisted Anchor of Chitosan onto Porous Composite Scaffolds for Accelerating Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 2998-3006.	5. 2	32
118	Evolution of Polymorphic Structure in \hat{l}^2 -Nucleated Isotactic Polypropylene under a Certain Pressure: Effects of Temperature and Flow. Industrial & Engineering Chemistry Research, 2019, 58, 5677-5685.	3.7	4
119	Nanotopographical polymeric surface with mussel-inspired decoration to enhance osteoblast differentiation. Applied Surface Science, 2019, 481, 987-993.	6.1	15
120	An efficient, food contact accelerator for stereocomplexation of high-molecular-weight poly() Tj ETQq0 0 0 rgBT	/Ogerlock	10 ₂ Tf 50 302
121	Robust hydrogel of regenerated cellulose by chemical crosslinking coupled with polyacrylamide network. Journal of Applied Polymer Science, 2019, 136, 47811.	2.6	17
122	Constructing Sandwich-Architectured Poly(<scp>l</scp> -lactide)/High-Melting-Point Poly(<scp>l</scp> -lactide) Nonwoven Fabrics: Toward Heat-Resistant Poly(<scp>l</scp> -lactide) Barrier Biocomposites with Full Biodegradability. ACS Applied Bio Materials, 2019, 2, 1357-1367.	4.6	11
123	Enhanced Mechanical Performance of Segregated Carbon Nanotube/Poly(lactic acid) Composite for Efficient Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2019, 58, 4454-4461.	3.7	32
124	Baroplastics with Robust Mechanical Properties and Reserved Processability through Hydrogen-Bonded Interactions. ACS Applied Materials & D. 11, 12008-12016.	8.0	21
125	Role of pressure in flowâ€induced shishâ€kabab in binary blend of long―and shortâ€chain Polyethylenes. Polymer Crystallization, 2019, 2, e10059.	0.8	1
126	Cover Image: Role of pressure in flowâ€induced shishâ€kabab in binary blend of long―and shortâ€chain Polyethylenes. Polymer Crystallization, 2019, 2, e10119.	0.8	0

#	Article	IF	Citations
127	Accelerating Bone Healing by Decorating BMP-2 on Porous Composite Scaffolds. ACS Applied Bio Materials, 2019, 2, 5717-5726.	4.6	12
128	High Oxidation Stability of Tea Polyphenol-stabilized Highly Crosslinked UHMWPE Under an in Vitro Aggressive Oxidative Condition. Clinical Orthopaedics and Related Research, 2019, 477, 1947-1955.	1.5	12
129	Enhanced oxidation stability of highly cross-linked ultrahigh molecular weight polyethylene by tea polyphenols for total joint implants. Materials Science and Engineering C, 2019, 94, 211-219.	7.3	27
130	Highly Conductive and Machineâ€Washable Textiles for Efficient Electromagnetic Interference Shielding. Advanced Materials Technologies, 2019, 4, 1800503.	5.8	101
131	Hydrophobic Graphene Oxide as a Promising Barrier of Water Vapor for Regenerated Cellulose Nanocomposite Films. ACS Omega, 2019, 4, 509-517.	3.5	46
132	Promoting osteoblast proliferation on polymer bone substitutes with bone-like structure by combining hydroxyapatite and bioactive glass. Materials Science and Engineering C, 2019, 96, 1-9.	7.3	19
133	Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon, 2019, 144, 101-108.	10.3	186
134	Robustly Superhydrophobic Conductive Textile for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1680-1688.	8.0	136
135	A revisit to the flow and pressure jointly induced thick lamellae in isotactic polypropylene: A synchrotron radiation small―and wideâ€∎ngle Xâ€ray scattering study. Polymer Crystallization, 2019, 2, e10035.	0.8	0
136	Rapid preparation and continuous processing of polylactide stereocomplex crystallite below its melting point. Polymer Bulletin, 2019, 76, 3371-3385.	3.3	9
137	Flowâ€induced crystallization of polylactide stereocomplex under pressure. Journal of Applied Polymer Science, 2018, 135, 46378.	2.6	9
138	Efficient electromagnetic interference shielding of lightweight carbon nanotube/polyethylene composites <i>via</i> compression molding plus salt-leaching. RSC Advances, 2018, 8, 8849-8855.	3.6	33
139	Shear-induced stereocomplex cylindrites in polylactic acid racemic blends: Morphology control and interfacial performance. Polymer, 2018, 140, 179-187.	3.8	30
140	Quantification of pressureâ€induced γâ€crystals in isotactic polypropylene: The influence of shear and carbon nanotubes. Polymer Crystallization, 2018, 1, e10002.	0.8	6
141	Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites. Composites Science and Technology, 2018, 162, 7-13.	7.8	141
142	The Role of Melt Memory and Template Effect in Complete Stereocomplex Crystallization and Phase Morphology of Polylactides. Crystal Growth and Design, 2018, 18, 1613-1621.	3.0	32
143	Toward biomimetic porous poly(ε-caprolactone) scaffolds: Structural evolution and morphological control during solid phase extrusion. Composites Science and Technology, 2018, 156, 192-202.	7.8	19
144	Simultaneously improved electromagnetic interference shielding andÂmechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Composites Science and Technology, 2018, 156, 87-94.	7.8	221

#	Article	IF	Citations
145	Enhanced thermal conductivity of polyethylene/boron nitride multilayer sheets through annealing. Composites Part A: Applied Science and Manufacturing, 2018, 107, 135-143.	7.6	62
146	Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2018, 110, 237-245.	7.6	93
147	Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11941-11949.	8.0	245
148	Ultra-high mechanical properties of porous composites based on regenerated cellulose and cross-linked poly(ethylene glycol). Carbohydrate Polymers, 2018, 179, 244-251.	10.2	20
149	Repeatable, room-temperature-processed baroplastic-carbon nanotube composites for electromagnetic interference shielding. Journal of Materials Chemistry C, 2018, 6, 12955-12964.	5.5	17
150	Flow-Induced Precursor Formation of Poly(<scp> </scp> -lactic acid) under Pressure. ACS Omega, 2018, 3, 15471-15481.	3.5	7
151	Role of HA and BG in engineering poly(ε â€caprolactone) porous scaffolds for accelerating cranial bone regeneration. Journal of Biomedical Materials Research - Part A, 2018, 107, 654-662.	4.0	15
152	Bone-like Polymeric Composites with a Combination of Bioactive Glass and Hydroxyapatite: Simultaneous Enhancement of Mechanical Performance and Bioactivity. ACS Biomaterials Science and Engineering, 2018, 4, 4434-4442.	5.2	10
153	Oriented Polar Crystals in Poly(Vinylidene Fluoride) Produced by Simultaneously Applying Pressure and Flow. Macromolecular Chemistry and Physics, 2018, 219, 1800299.	2.2	6
154	Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. ACS Applied Materials & Distribution, 10, 40156-40167.	8.0	108
155	Wearable Polyethylene/Polyamide Composite Fabric for Passive Human Body Cooling. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41637-41644.	8.0	65
156	A highly efficient and heat-resistant electromagnetic interference shielding carbon nanotube/poly(phenylene sulfide) composite <i>via</i> sinter molding. Journal of Materials Chemistry C, 2018, 6, 10760-10766.	5.5	57
157	Injection Molded Segregated Carbon Nanotube/Polypropylene Composite for Efficient Electromagnetic Interference Shielding. Industrial & Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2018, 57, 12378-12385.	3.7	53
158	Aqueous Nanocoating Approach to Strong Natural Microfibers with Tunable Electrical Conductivity for Wearable Electronic Textiles. ACS Applied Nano Materials, 2018, 1, 2406-2413.	5.0	10
159	Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. Journal of Colloid and Interface Science, 2018, 530, 113-119.	9.4	86
160	Highly Anisotropic, Thermally Conductive, and Mechanically Strong Polymer Composites with Nacre-like Structure for Thermal Management Applications. ACS Applied Nano Materials, 2018, 1, 3312-3320.	5.0	48
161	Enhanced Thermal Conductivity of Segregated Poly(vinylidene fluoride) Composites via Forming Hybrid Conductive Network of Boron Nitride and Carbon Nanotubes. Industrial & Dipineering Chemistry Research, 2018, 57, 10391-10397.	3.7	58
162	Integrated strength and toughness in graphene/calcium alginate films for highly efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2018, 6, 9166-9174.	5.5	54

#	Article	IF	CITATIONS
163	Can Relaxor Ferroelectric Behavior Be Realized for Poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 2	747 Td (fli 4.8	uoride- <i>co</i>
	Units in PVDF Crystals?. Macromolecules, 2018, 51, 5460-5472.		
164	Simultaneously improving stiffness, toughness, and heat deflection resistance of polylactide using the strategy of orientation crystallization amplified by interfacial interactions. Polymer Crystallization, 2018, 1, e10004.	0.8	10
165	Largely enhanced mechanical property of segregated carbon nanotube/poly(vinylidene fluoride) composites with high electromagnetic interference shielding performance. Composites Science and Technology, 2018, 167, 260-267.	7.8	74
166	Synergistic Effect of Graphite and Carbon Nanotubes on Improved Electromagnetic Interference Shielding Performance in Segregated Composites. Industrial & Engineering Chemistry Research, 2018, 57, 11929-11938.	3.7	78
167	Largely enhanced mechanical performance of poly(butylene succinate) multiple system <i>via</i> shear stress-induced orientation of the hierarchical structure. Journal of Materials Chemistry A, 2018, 6, 13373-13385.	10.3	18
168	Layer structure by shear-induced crystallization and thermal mechanical properties of injection-molded poly(l-lactide) with nucleating agents. Polymer, 2017, 110, 196-210.	3.8	30
169	Melt processing and structural manipulation of highly linear disentangled ultrahigh molecular weight polyethylene. Chemical Engineering Journal, 2017, 315, 132-141.	12.7	37
170	Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer. Journal of Materials Chemistry C, 2017, 5, 3130-3138.	5.5	137
171	Interfacial Shish-Kebabs Lengthened by Coupling Effect of In Situ Flexible Nanofibrils and Intense Shear Flow: Achieving Hierarchy To Conquer the Conflicts between Strength and Toughness of Polylactide. ACS Applied Materials & Interfaces, 2017, 9, 10148-10159.	8.0	77
172	Ultrahigh gas barrier poly (vinyl alcohol) nanocomposite film filled with congregated and oriented Fe 3 O 4 @GO sheets induced by magnetic-field. Composites Part A: Applied Science and Manufacturing, 2017, 97, 1-9.	7.6	48
173	A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chemical Engineering Journal, 2017, 323, 29-36.	12.7	136
174	Realization of ultra-high barrier to water vapor by 3D-interconnection of super-hydrophobic graphene layers in polylactide films. Journal of Materials Chemistry A, 2017, 5, 14377-14386.	10.3	20
175	High Strain Tolerant EMI Shielding Using Carbon Nanotube Network Stabilized Rubber Composite. Advanced Materials Technologies, 2017, 2, 1700078.	5.8	153
176	Thicker Lamellae and Higher Crystallinity of Poly(lactic acid) via Applying Shear Flow and Pressure and Adding Poly(ethylene Glycol). Journal of Physical Chemistry B, 2017, 121, 5842-5852.	2.6	19
177	Window of Pressure and Flow To Produce \hat{l}^2 -Crystals in Isotactic Polypropylene Mixed with \hat{l}^2 -Nucleating Agent. Macromolecules, 2017, 50, 4807-4816.	4.8	47
178	Enhanced Heat Deflection Resistance via Shear Flow-Induced Stereocomplex Crystallization of Polylactide Systems. ACS Sustainable Chemistry and Engineering, 2017, 5, 1692-1703.	6.7	74
179	Advances in Enhancing Mechanical Performance of Ultrahigh Molecular Weight Polyethylene Used for Total Joint Replacement. ACS Symposium Series, 2017, , 273-294.	0.5	3
180	A nacre-mimetic superstructure of poly(butylene succinate) structured by using an intense shear flow and ramie fiber as a promising strategy for simultaneous reinforcement and toughening. Journal of Materials Chemistry A, 2017, 5, 22697-22707.	10.3	18

#	Article	IF	Citations
181	A Criterion for Flowâ€Induced Oriented Crystals in Isotactic Polypropylene under Pressure. Macromolecular Rapid Communications, 2017, 38, 1700407.	3.9	12
182	Stretching-Induced Relaxor Ferroelectric Behavior in a Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 707 TM Macromolecules, 2017, 50, 7646-7656.	d (fluoride 4.8	e- <i>co</i> -
183	Effects of Solvents on Stereocomplex Crystallization of Highâ€Molecularâ€Weight Polylactic Acid Racemic Blends in the Presence of Carbon Nanotubes. Macromolecular Chemistry and Physics, 2017, 218, 1700292.	2.2	3
184	A strong and tough polymer–carbon nanotube film for flexible and efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2017, 5, 8944-8951.	5.5	112
185	Temperature-dependent \hat{l}^2 -crystal growth in isotactic polypropylene with \hat{l}^2 -nucleating agent after shear flow. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1540-1551.	3.8	6
186	Gradient Structure of Crystalline Morphology in Injection-Molded Polylactide Parts Tuned by Oscillation Shear Flow and Its Influence on Thermomechanical Performance. Industrial & Engineering Chemistry Research, 2017, 56, 6295-6306.	3.7	25
187	Promoting Interfacial Transcrystallization in Polylactide/Ramie Fiber Composites by Utilizing Stereocomplex Crystals. ACS Sustainable Chemistry and Engineering, 2017, 5, 7128-7136.	6.7	20
188	Simultaneous reinforcement and toughening of polymer/hydroxyapatite composites by constructing bone-like structure. Composites Science and Technology, 2017, 151, 234-242.	7.8	31
189	Octadecylamine-Grafted Graphene Oxide Helps the Dispersion of Carbon Nanotubes in Ethylene Vinyl Acetate. Polymers, 2017, 9, 397.	4.5	13
190	Engineering Porous Poly(lactic acid) Scaffolds with High Mechanical Performance via a Solid State Extrusion/Porogen Leaching Approach. Polymers, 2016, 8, 213.	4.5	49
191	A Unique Double Percolated Polymer Composite for Highly Efficient Electromagnetic Interference Shielding. Macromolecular Materials and Engineering, 2016, 301, 1232-1241.	3.6	62
192	Structural Hierarchy and Polymorphic Transformation in Shearâ€Induced Shishâ€Kebab of Stereocomplex Poly(Lactic Acid). Macromolecular Rapid Communications, 2016, 37, 745-751.	3.9	31
193	Macromol. Rapid Commun. 9/2016. Macromolecular Rapid Communications, 2016, 37, 808-808.	3.9	O
194	Strong and ductile poly(butylene adipateâ€ <i>co</i> àê€terephthalate) biocomposites fabricated by oscillation shear injection molding. Journal of Applied Polymer Science, 2016, 133, .	2.6	2
195	Simultaneous Preparation and Dispersion of Regenerated Cellulose Nanoparticles Using a Facile Protocol of Dissolution–Gelation–Isolation–Melt Extrusion. ACS Sustainable Chemistry and Engineering, 2016, 4, 2470-2478.	6.7	23
196	Tailor-made poly(<scp>l</scp> -lactide)/poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching. RSC Advances, 2016, 6, 47418-47426.	3.6	28
197	Graphene oxide induced isotactic polypropylene crystallization: role of structural reduction. RSC Advances, 2016, 6, 23930-23941.	3.6	20
198	Super-Robust Polylactide Barrier Films by Building Densely Oriented Lamellae Incorporated with Ductile in Situ Nanofibrils of Poly(butylene adipate- <i>co</i> -terephthalate). ACS Applied Materials & amp; Interfaces, 2016, 8, 8096-8109.	8.0	102

#	Article	IF	CITATIONS
199	In Situ Nanofibrillar Networks Composed of Densely Oriented Polylactide Crystals as Efficient Reinforcement and Promising Barrier Wall for Fully Biodegradable Poly(butylene succinate) Composite Films. ACS Sustainable Chemistry and Engineering, 2016, 4, 2887-2897.	6.7	43
200	Dominant \hat{l}^2 -Form of Poly($\langle scp \rangle \langle scp \rangle $ actic acid) Obtained Directly from Melt under Shear and Pressure Fields. Macromolecules, 2016, 49, 3826-3837.	4.8	73
201	Inducing Stereocomplex Crystals by Template Effect of Residual Stereocomplex Crystals during Thermal Annealing of Injection-Molded Polylactide. Industrial & Engineering Chemistry Research, 2016, 55, 10896-10905.	3.7	28
202	High-Pressure Compression-Molded Porous Resorbable Polymer/Hydroxyapatite Composite Scaffold for Cranial Bone Regeneration. ACS Biomaterials Science and Engineering, 2016, 2, 1471-1482.	5.2	60
203	Highly Efficient "Composite Barrier Wall―Consisting of Concentrated Graphene Oxide Nanosheets and Impermeable Crystalline Structure for Poly(lactic acid) Nanocomposite Films. Industrial & Engineering Chemistry Research, 2016, 55, 9544-9554.	3.7	15
204	Confined crystallization of poly(butylene succinate) intercalated into organoclays: role of surfactant polarity. RSC Advances, 2016, 6, 68072-68080.	3.6	7
205	Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk. Scientific Reports, 2016, 6, 34572.	3.3	24
206	Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1490-1499.	3.8	34
207	Formation of a Segregated Electrically Conductive Network Structure in a Low-Melt-Viscosity Polymer for Highly Efficient Electromagnetic Interference Shielding. ACS Sustainable Chemistry and Engineering, 2016, 4, 4137-4145.	6.7	123
208	Robust Interfacial Cylindrites of Polylactic Acid Modulated by an Intense Shear Flow Field. ACS Sustainable Chemistry and Engineering, 2016, 4, 3558-3566.	6.7	17
209	Nonisothermal crystallization of isotactic polypropylene in carbon nanotube networks. Journal of Thermoplastic Composite Materials, 2016, 29, 1352-1368.	4.2	5
210	Innovative enhancement of gas barrier properties of biodegradable poly(butylene succinate) nanocomposite films by introducing confined crystals. RSC Advances, 2016, 6, 2530-2536.	3.6	14
211	Simultaneously improving wear resistance and mechanical performance of ultrahigh molecular weight polyethylene via cross-linking and structural manipulation. Polymer, 2016, 90, 222-231.	3.8	24
212	Understanding Nonlinear Dielectric Properties in a Biaxially Oriented Poly(vinylidene fluoride) Film at Both Low and High Electric Fields. ACS Applied Materials & Interfaces, 2016, 8, 455-465.	8.0	46
213	Crystallization of linear low density polyethylene on an in situ oriented isotactic polypropylene substrate manipulated by an extensional flow field. CrystEngComm, 2016, 18, 77-91.	2.6	17
214	A facile strategy to fabricate microencapsulated expandable graphite as a flameâ€retardant for rigid polyurethane foams. Journal of Applied Polymer Science, 2015, 132, .	2.6	20
215	Industrially Scalable Approach to Nanohybrid Shish Kebabs by In Situ Nanofibrillation of Isotactic Poly(propylene). Macromolecular Chemistry and Physics, 2015, 216, 2241-2248.	2.2	4
216	Unexpected shear dependence of pressure-induced \hat{I}^3 -crystals in isotactic polypropylene. Polymer Chemistry, 2015, 6, 4588-4596.	3.9	25

#	Article	IF	CITATIONS
217	Morphology and film performance of phthalate-free plasticized poly(vinyl chloride) composite particles via the graft copolymerization of acrylate swelling flower-like latex particles. RSC Advances, 2015, 5, 40076-40087.	3.6	13
218	Annealing regulates the performance of an electrospun poly($\hat{l}\mu$ -caprolactone) membrane to accommodate tissue engineering. RSC Advances, 2015, 5, 32604-32608.	3.6	25
219	Temperature dependence of molecular conformation in uniaxially deformed isotactic polypropylene investigated by combination of polarized FTIR spectroscopy and 2D correlation analysis. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 673-684.	2.1	12
220	Simultaneous Reinforcement and Toughening of Carbon Nanotube/Cellulose Conductive Nanocomposite Films by Interfacial Hydrogen Bonding. ACS Sustainable Chemistry and Engineering, 2015, 3, 317-324.	6.7	76
221	Cellulose composite aerogel for highly efficient electromagnetic interference shielding. Journal of Materials Chemistry A, 2015, 3, 4983-4991.	10.3	269
222	In-situ preparation and characterization of highly oriented graphene oxide/cellulose-poly(butylene) Tj ETQq0 0 0	rgBT/Ove 4.9	rlogk 10 Tf 50
223	Facile, green and affordable strategy for structuring natural graphite/polymer composite with efficient electromagnetic interference shielding. RSC Advances, 2015, 5, 22587-22592.	3.6	52
224	Percolation and resistivity-temperature behaviours of carbon nanotube-carbon black hybrid loaded ultrahigh molecular weight polyethylene composites with segregated structures. RSC Advances, 2015, 5, 61318-61323.	3.6	21
225	Highly Enhanced Crystallization Kinetics of Poly(<scp>l</scp> -lactic acid) by Poly(ethylene glycol) Grafted Graphene Oxide Simultaneously as Heterogeneous Nucleation Agent and Chain Mobility Promoter. Macromolecules, 2015, 48, 4891-4900.	4.8	93
226	Shear-Induced Precursor Relaxation-Dependent Growth Dynamics and Lamellar Orientation of \hat{l}^2 -Crystals in \hat{l}^2 -Nucleated Isotactic Polypropylene. Journal of Physical Chemistry B, 2015, 119, 5716-5727.	2.6	43
227	The crystallization behavior of biodegradable poly(butylene succinate) in the presence of organically modified clay with a wide range of loadings. Chinese Journal of Polymer Science (English Edition), 2015, 33, 576-586.	3.8	15
228	Vibration assisted extrusion of polypropylene. Chinese Journal of Polymer Science (English Edition), 2015, 33, 688-696.	3.8	8
229	Raspberry-like morphology of polyvinyl chloride/zinc oxide nanoparticles induced by surface interaction and formation of nanoporous foam. RSC Advances, 2015, 5, 36845-36857.	3.6	8
230	From Nanofibrillar to Nanolaminar Poly(butylene succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(lactic acid) Films. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8023-8032.	8.0	67
231	Nucleation Ability of Thermally Reduced Graphene Oxide for Polylactide: Role of Size and Structural Integrity. Journal of Physical Chemistry B, 2015, 119, 4777-4787.	2.6	18
232	Effects of extrusion draw ratio on the morphology, structure and mechanical properties of poly(<scp> < scp>-lactic acid) fabricated using solid state ram extrusion. RSC Advances, 2015, 5, 69016-69023.</scp>	3.6	9
233	Flow and Pressure Jointly Induced Ultrahigh Melting Temperature Spherulites with Oriented Thick Lamellae in Isotactic Polypropylene. Macromolecules, 2015, 48, 5834-5844.	4.8	37
234	Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. Journal of Materials Chemistry C, 2015, 3, 9369-9378.	5.5	227

#	Article	IF	Citations
235	Isotactic polypropylene reinforced atactic polypropylene by formation of shish-kebab superstructure. Polymer, 2015, 78, 120-133.	3.8	20
236	Role of Stably Entangled Chain Network Density in Shish-Kebab Formation in Polyethylene under an Intense Flow Field. Macromolecules, 2015, 48, 6652-6661.	4.8	57
237	Injection-molded hydroxyapatite/polyethylene bone-analogue biocomposites via structure manipulation. Journal of Materials Chemistry B, 2015, 3, 7585-7593.	5.8	11
238	Improved mechanical and barrier properties of low-density polyethylene nanocomposite films by incorporating hydrophobic graphene oxide nanosheets. RSC Advances, 2015, 5, 80739-80748.	3.6	26
239	Structured Reduced Graphene Oxide/Polymer Composites for Ultraâ€Efficient Electromagnetic Interference Shielding. Advanced Functional Materials, 2015, 25, 559-566.	14.9	1,007
240	Controlled co-delivery nanocarriers based on mixed micelles formed from cyclodextrin-conjugated and cross-linked copolymers. Colloids and Surfaces B: Biointerfaces, 2014, 123, 486-492.	5.0	17
241	Characterization and performance of dodecyl amine functionalized graphene oxide and dodecyl amine functionalized graphene/highâ€density polyethylene nanocomposites: A comparative study. Journal of Applied Polymer Science, 2014, 131, .	2.6	43
242	Low-dimensional carbonaceous nanofiller induced polymer crystallization. Progress in Polymer Science, 2014, 39, 555-593.	24.7	140
243	Toward faster degradation for natural fiber reinforced poly(lactic acid) biocomposites by enhancing the hydrolysis-induced surface erosion. Journal of Polymer Research, 2014, 21, 1.	2.4	31
244	Biodegradable poly(lactic acid)/hydroxyl apatite 3D porous scaffolds using high-pressure molding and salt leaching. Journal of Materials Science, 2014, 49, 1648-1658.	3.7	31
245	Effects of dodecyl amine functionalized graphene oxide on the crystallization behavior of isotactic polypropylene. Journal of Applied Polymer Science, 2014, 131, .	2.6	8
246	Crystallization of isotactic polypropylene inside dense networks of carbon nanofillers. Journal of Applied Polymer Science, 2014, 131, .	2.6	0
247	Non-isothermal crystallization kinetics of alkyl-functionalized graphene oxide/high-density polyethylene nanocomposites. Composite Interfaces, 2014, 21, 203-215.	2.3	12
248	Simultaneous improvement of strength and toughness in fiber reinforced isotactic polypropylene composites by shear flow and a \hat{l}^2 -nucleating agent. RSC Advances, 2014, 4, 14766-14776.	3.6	38
249	Ultra-low gas permeability and efficient reinforcement of cellulose nanocomposite films by well-aligned graphene oxide nanosheets. Journal of Materials Chemistry A, 2014, 2, 15853-15863.	10.3	78
250	Self-reinforced polyethylene blend for artificial joint application. Journal of Materials Chemistry B, 2014, 2, 971.	5.8	35
251	Improved performance balance of polyethylene by simultaneously forming oriented crystals and blending ultrahigh-molecular-weight polyethylene. RSC Advances, 2014, 4, 1512-1520.	3.6	35
252	Unprecedented Access to Strong and Ductile Poly(lactic acid) by Introducing In Situ Nanofibrillar Poly(butylene succinate) for Green Packaging. Biomacromolecules, 2014, 15, 4054-4064.	5.4	149

#	Article	IF	Citations
253	Strong and tough micro/nanostructured poly(lactic acid) by mimicking the multifunctional hierarchy of shell. Materials Horizons, 2014, 1, 546-552.	12.2	61
254	Molecular weight-modulated electrospun poly ($\hat{l}\mu$ -caprolactone) membranes for postoperative adhesion prevention. RSC Advances, 2014, 4, 41696-41704.	3.6	33
255	Conductive polymer composites with segregated structures. Progress in Polymer Science, 2014, 39, 1908-1933.	24.7	617
256	Structural Basis for Unique Hierarchical Cylindrites Induced by Ultrahigh Shear Gradient in Single Natural Fiber Reinforced Poly(lactic acid) Green Composites. Biomacromolecules, 2014, 15, 1676-1686.	5.4	57
257	Formation of Poly(L-lactide) mesophase and its chain mobility dependent kinetics. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1176-1187.	3.8	19
258	Phase assembly-induced transition of three dimensional nanofibril- to sheet-networks in porous cellulose with tunable properties. Cellulose, 2014, 21, 383-394.	4.9	36
259	Enhanced toughness and strength of conductive cellulose-poly(butylene succinate) films filled with multiwalled carbon nanotubes. Cellulose, 2014, 21, 1803-1812.	4.9	10
260	Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of <i>in situ < /i> thermally reduced graphene oxide. Nanotechnology, 2014, 25, 145705.</i>	2.6	123
261	Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. Journal of Membrane Science, 2014, 464, 110-118.	8.2	170
262	Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene. Biomaterials, 2014, 35, 6687-6697.	11.4	69
263	Efficient Utilization of Atactic Polypropylene in Its Isotactic Polypropylene Blends via "Structuring― Processing. Industrial & Engineering Chemistry Research, 2014, 53, 10144-10154.	3.7	16
264	Core-shell structure design of pulverized expandable graphite particles and their application in flame-retardant rigid polyurethane foams. Polymer International, 2014, 63, 72-83.	3.1	37
265	High-pressure crystallization of poly(lactic acid) with and without N2 atmosphere protection. Journal of Materials Science, 2013, 48, 7374-7383.	3.7	5
266	Tunable liquid sensing performance of conducting carbon nanotube–polyethylene composites with a porous segregated structure. RSC Advances, 2013, 3, 19802.	3.6	14
267	Strong Shear Flow-Driven Simultaneous Formation of Classic Shish-Kebab, Hybrid Shish-Kebab, and Transcrystallinity in Poly(lactic acid)/Natural Fiber Biocomposites. ACS Sustainable Chemistry and Engineering, 2013, 1, 1619-1629.	6.7	89
268	Influence of surface polarity of carbon nanotubes on electric field induced aligned conductive network formation in a polymer melt. RSC Advances, 2013, 3, 24185.	3.6	10
269	Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. Journal of Materials Chemistry A, 2013, 1, 4177.	10.3	7 5
270	Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures. Journal of Materials Science, 2013, 48, 4892-4898.	3.7	36

#	Article	IF	Citations
271	Nonlinear current-voltage characteristics of conductive polyethylene composites with carbon black filled pet microfibrils. Chinese Journal of Polymer Science (English Edition), 2013, 31, 211-217.	3.8	17
272	Non-isothermal crystalliztion kinetics of poly(phenylene sulfide) with low crosslinking levels. Chinese Journal of Polymer Science (English Edition), 2013, 31, 462-470.	3.8	8
273	Resistivity Relaxation of Anisotropic Conductive Polymer Composites. Journal of Macromolecular Science - Physics, 2013, 52, 788-796.	1.0	3
274	Hierarchic Structure and Mechanical Property of Short Glass Fiber/Isotactic Polypropylene Composites Containing \hat{l}^2 -Nucleation Agent. Polymer-Plastics Technology and Engineering, 2013, 52, 80-89.	1.9	13
275	A Conductive Carbon Nanotube-Polymer Composite Based on a Co-continuous Blend. Journal of Macromolecular Science - Physics, 2013, 52, 167-177.	1.0	2
276	Ultraporous poly(lactic acid) scaffolds with improved mechanical performance using highâ€pressure molding and salt leaching. Journal of Applied Polymer Science, 2013, 130, 3509-3520.	2.6	9
277	Organic liquid stimuliâ€response behaviors of electrically conductive microfibrillar composite with a selective conductive component distribution. Journal of Applied Polymer Science, 2012, 124, 4466-4474.	2.6	2
278	Morphology and Crystallization Behavior of Compatibilized Isotactic Polypropylene/Poly(butylene) Tj ETQq0 0 0 507-513.	rgBT /Ove 1.9	rlock 10 Tf 50 9
279	Electrical Properties of an Ultralight Conductive Carbon Nanotube/Polymer Composite Foam Upon Compression. Polymer-Plastics Technology and Engineering, 2012, 51, 304-306.	1.9	19
280	Formation of Shish-Kebabs in Injection-Molded Poly(<scp> </scp> -lactic acid) by Application of an Intense Flow Field. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6774-6784.	8.0	128
281	Polymeric Nanocubes Spontaneously Formed from Poly($\hat{l}\mu$ -caprolactone). ACS Macro Letters, 2012, 1, 933-936.	4.8	8
282	Formation of Interlinked Shish-Kebabs in Injection-Molded Polyethylene under the Coexistence of Lightly Cross-Linked Chain Network and Oscillation Shear Flow. Macromolecules, 2012, 45, 6600-6610.	4.8	130
283	Super-tough conducting carbon nanotube/ultrahigh-molecular-weight polyethylene composites with segregated and double-percolated structure. Journal of Materials Chemistry, 2012, 22, 23568.	6.7	123
284	Highly crystallized poly (lactic acid) under high pressure. AIP Advances, 2012, 2, .	1.3	38
285	Shear Flow and Carbon Nanotubes Synergistically Induced Nonisothermal Crystallization of Poly(lactic acid) and Its Application in Injection Molding. Biomacromolecules, 2012, 13, 3858-3867.	5.4	95
286	Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. Journal of Materials Chemistry, 2012, 22, 18772.	6.7	516
287	Non-isothermal crystallization of ethylene-vinyl acetate copolymer containing a high weight fraction of graphene nanosheets and carbon nanotubes. Chinese Journal of Polymer Science (English Edition), 2012, 30, 879-892.	3.8	16
288	Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. Journal of Polymer Research, 2012, 19, 1.	2.4	44

#	Article	IF	CITATIONS
289	Composites of Ultrahighâ€Molecularâ€Weight Polyethylene with Graphene Sheets and/or MWCNTs with Segregated Network Structure: Preparation and Properties. Macromolecular Materials and Engineering, 2012, 297, 437-443.	3.6	110
290	Microstructure and mechanical properties of isotactic polypropylene composite with twoâ€scale reinforcement. Polymers for Advanced Technologies, 2012, 23, 1580-1589.	3.2	10
291	Anomalous attenuation and structural origin of positive temperature coefficient (PTC) effect in a carbon black (CB)/poly(ethylene terephthalate) (PET)/polyethylene (PE) electrically conductive microfibrillar polymer composite with a preferential CB distribution. Journal of Applied Polymer Science, 2012, 125, E561.	2.6	24
292	Synergistic effect of ammonium polyphosphate and expandable graphite on flameâ€retardant properties of acrylonitrileâ€butadieneâ€styrene. Journal of Applied Polymer Science, 2012, 126, 1337-1343.	2.6	67
293	Easy alignment and effective nucleation activity of ramie fibers in injectionâ€molded poly(lactic acid) biocomposites. Biopolymers, 2012, 97, 825-839.	2.4	60
294	In-situ synchrotron x-ray scattering study on isothermal crystallization of ethylene-vinyl acetate copolymers containing a high weight fraction of carbon nanotubes and graphene nanosheets. Journal of Polymer Research, 2012, 19, 1.	2.4	9
295	High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. Journal of Membrane Science, 2012, 409-410, 156-163.	8.2	273
296	Temperature and time dependence of electrical resistivity in an anisotropically conductive polymer composite with <i>in situ</i> conductive microfibrils. Journal of Applied Polymer Science, 2012, 124, 1808-1814.	2.6	15
297	Conductive network formation during annealing of an oriented polyethylene-based composite. Journal of Materials Science, 2012, 47, 3713-3719.	3.7	21
298	Graphene Nanosheets and Shear Flow Induced Crystallization in Isotactic Polypropylene Nanocomposites. Macromolecules, 2011, 44, 2808-2818.	4.8	160
299	The Resistivity Response of an Anisotropically Conductive Polymer Composite with in-situ Conductive Microfibrils During Cooling. Polymer-Plastics Technology and Engineering, 2011, 50, 1511-1514.	1.9	10
300	Shear induced crystallization of poly(L-lactide) and poly(ethylene glycol) (PLLA-PEG-PLLA) copolymers with different block length. Journal of Polymer Research, 2011, 18, 675-680.	2.4	20
301	Tunable positive liquid coefficient of an anisotropically conductive carbon nanotube-polymer composite. Journal of Polymer Research, 2011, 18, 2239-2243.	2.4	13
302	Crystallization behavior and morphology of one-step reaction compatibilized microfibrillar reinforced isotactic polypropylene/poly(ethylene terephthalate) (iPP/PET) blends. Chinese Journal of Polymer Science (English Edition), 2011, 29, 540-551.	3.8	11
303	Electrical conductivity and major mechanical and thermal properties of carbon nanotubeâ€filled polyurethane foams. Journal of Applied Polymer Science, 2011, 120, 3014-3019.	2.6	77
304	Improved properties of highly oriented graphene/polymer nanocomposites. Journal of Applied Polymer Science, 2011, 121, 3167-3174.	2.6	61
305	Expandable graphiteâ€methyl methacrylateâ€acrylic acid copolymer composite particles as a flame retardant of rigid polyurethane foam. Journal of Applied Polymer Science, 2011, 122, 932-941.	2.6	46
306	Effect of melt vibration on structure and mechanical properties of HDPE/nano-CaCO3 blend. Polymer Bulletin, 2010, 65, 59-68.	3.3	6

#	Article	IF	CITATIONS
307	Non-isothermal crystallization of poly(L-lactide) (PLLA) under quiescent and steady shear conditions. Chinese Journal of Polymer Science (English Edition), 2010, 28, 357-366.	3.8	41
308	Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite. Applied Physics Letters, 2010, 96, .	3.3	66
309	Polyamide-6/Poly(lactic acid) Blends Compatibilized by the Maleic Anhydride Grafted Polyethylene-Octene Elastomer. Polymer-Plastics Technology and Engineering, 2010, 49, 1241-1246.	1.9	36
310	Shear Enhanced Crystallization and Tensile Behaviors of Oscillation Shear Injection Molded Poly(ethylene terephthalate). Journal of Macromolecular Science - Physics, 2010, 50, 383-397.	1.0	5
311	Isothermal Crystallization of Poly(<scp>l</scp> -lactide) Induced by Graphene Nanosheets and Carbon Nanotubes: A Comparative Study. Macromolecules, 2010, 43, 5000-5008.	4.8	308
312	Competitive Growth of \hat{l}_{\pm} - and \hat{l}^2 -Crystals in \hat{l}^2 -Nucleated Isotactic Polypropylene under Shear Flow. Macromolecules, 2010, 43, 6760-6771.	4.8	128
313	Dependence of the Avrami Exponent on Supercooling During Nonisothermal Crystallization of Poly(phenylene sulfide). Polymer-Plastics Technology and Engineering, 2009, 48, 324-326.	1.9	2
314	Negative Temperature Coefficient of Resistivity in Lightweight Conductive Carbon Nanotube/Polymer Composites. Macromolecular Materials and Engineering, 2009, 294, 91-95.	3.6	100
315	Flameâ€retardant and mechanical properties of highâ€density rigid polyurethane foams filled with decabrominated dipheny ethane and expandable graphite. Journal of Applied Polymer Science, 2009, 111, 2372-2380.	2.6	60
316	Positive temperature coefficient and timeâ€dependent resistivity of carbon nanotubes (CNTs)/ultrahigh molecular weight polyethylene (UHMWPE) composite. Journal of Applied Polymer Science, 2009, 114, 1002-1010.	2.6	27
317	Effects of expandable graphite and ammonium polyphosphate on the flameâ€retardant and mechanical properties of rigid polyurethane foams. Journal of Applied Polymer Science, 2009, 114, 853-863.	2.6	144
318	Poly(<scp>L</scp> â€lactide) crystallization induced by multiwall carbon nanotubes at very low loading. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2341-2352.	2.1	68
319	Unusual Tuning of Mechanical Properties of Isotactic Polypropylene Using Counteraction of Shear Flow and \hat{l}^2 -Nucleating Agent on \hat{l}^2 -Form Nucleation. Macromolecules, 2009, 42, 4343-4348.	4.8	194
320	Crystallization of oriented isotactic polypropylene (iPP) in the presence of in situ poly(ethylene) Tj ETQq0 0 0 rgB	T <u> O</u> yerloc	k 18 Tf 50 2:
321	Doubleâ€yielding behavior in injectionâ€molded polycarbonate/highâ€density polyethylene/ethylene–vinyl acetate copolymer blends. Journal of Applied Polymer Science, 2008, 108, 287-294.	2.6	5
322	Flame retardancy of hollow glass microsphere/rigid polyurethane foams in the presence of expandable graphite. Journal of Applied Polymer Science, 2008, 109, 1935-1943.	2.6	59
323	Manipulating the conductivity of carbonâ€blackâ€filled immiscible polymer composites by insulating nanoparticles. Journal of Applied Polymer Science, 2008, 110, 3073-3079.	2.6	12
324	Flame retardancy of whisker silicon oxide/rigid polyurethane foam composites with expandable graphite. Journal of Applied Polymer Science, 2008, 110, 3871-3879.	2.6	35

#	Article	IF	CITATIONS
325	CNTs/ UHMWPE composites with a two-dimensional conductive network. Materials Letters, 2008, 62, 3530-3532.	2.6	133
326	Carbon Nanotubes can Enhance Phase Dispersion in Polymer Blends. Polymer-Plastics Technology and Engineering, 2007, 46, 129-134.	1.9	26
327	Effect of annealing on fracture behavior of poly(propylene-block-ethylene) using essential work of fracture analysis. Journal of Applied Polymer Science, 2007, 103, 3438-3446.	2.6	16
328	Dependence of flame-retardant properties on density of expandable graphite filled rigid polyurethane foam. Journal of Applied Polymer Science, 2007, 104, 3347-3355.	2.6	124
329	Morphology development of high-density rigid polyurethane foam upon compression by on-line scanning electronic microscope. Journal of Applied Polymer Science, 2007, 105, 2008-2011.	2.6	9
330	Recyclability of In Situ Microfibrillar Poly(ethylene terephthalate)/High-Density Polyethylene Blends. Macromolecular Materials and Engineering, 2007, 292, 362-372.	3.6	23
331	Morphology and Properties of Poly(L-Lactide) (PLLA) Filled with Hollow Glass Beads. Macromolecular Materials and Engineering, 2007, 292, 646-654.	3.6	36
332	Crystalline morphology of isotactic polypropylene (iPP) in injection molded poly(ethylene) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 462 Td
333	Rheological behavior of PET/HDPEin situ microfibrillar blends: Influence of microfibrils' flexibility. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1205-1216.	2.1	28
334	The role of gas penetration on morphological formation of polycarbonate/polyethylene blend molded by gas-assisted injection molding. Journal of Materials Science, 2007, 42, 7275-7285.	3.7	28
335	Suppression of Skinâ^'Core Structure in Injection-Molded Polymer Parts by in Situ Incorporation of a Microfibrillar Network. Macromolecules, 2006, 39, 6771-6775.	4.8	109
336	Flame retardancy of different-sized expandable graphite particles for high-density rigid polyurethane foams. Polymer International, 2006, 55, 862-871.	3.1	137
337	Essential work of fracture evaluation of fracture behavior of glass bead filled linear low-density polyethylene. Journal of Applied Polymer Science, 2006, 99, 1781-1787.	2.6	21
338	Double Yielding in Injection-Molded Polycarbonate/Polyethylene Blends: Composition Dependence. Macromolecular Materials and Engineering, 2006, 291, 477-484.	3.6	13
339	On transcrystallinity in semi-crystalline polymer composites. Composites Science and Technology, 2005, 65, 999-1021.	7.8	251
340	Essential work of fracture of glass bead filled low density polyethylene. Journal of Materials Science, 2005, 40, 5323-5326.	3.7	12
341	Rheological behavior comparison between PET/HDPE and PC/HDPE microfibrillar blends. Polymer Engineering and Science, 2005, 45, 1231-1238.	3.1	34
342	Morphology and mechanical properties of poly (phenylene sulfide)/isotactic polypropylene in situ microfibrillar blends. Polymer Engineering and Science, 2005, 45, 1303-1311.	3.1	26

#	Article	IF	CITATIONS
343	Injection molding-induced morphology of thermoplastic polymer blends. Polymer Engineering and Science, 2005, 45, 1655-1665.	3.1	53
344	Expandable Graphite For Halogen-Free Flame-Retardant of High-Density Rigid Polyurethane Foams. Polymer-Plastics Technology and Engineering, 2005, 44, 1323-1337.	1.9	82
345	Influence of Matrix Polymer on Deformation and Morphology of Injection Molded Immiscible Blends with High Interfacial Contact. Polymer-Plastics Technology and Engineering, 2005, 44, 583-602.	1.9	5
346	Morphology-tensile behavior relationship in injection molded poly(ethylene) Tj ETQq 000 rgBT /Overlock $10Tf50$ Journal of Materials Science, 2004, 39, 413-431.	627 Td (te 3.7	erephthalate 45
347	Morphology-tensile behavior relationship in injection molded poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 3 of Materials Science, 2004, 39, 433-443.	10 Tf 50 58 3.7	87 Td (te <mark>rep</mark> 25
348	Review on auxetic materials. Journal of Materials Science, 2004, 39, 3269-3279.	3.7	448
349	Deformation and morphology development of poly(ethylene terephthalate)/polyethylene and polycarbonate/polyethylene blends with high interfacial contact during elongation. Polymer Engineering and Science, 2004, 44, 1561-1570.	3.1	14
350	Influences of hot stretch ratio on essential work of fracture ofin-situ microfibrillar poly(ethylene) Tj ETQq0 0 0 rgBT	[]Qverlock	₹ 10 Tf 50 4
351	Morphology and nonisothermal crystallization ofin situ microfibrillar poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Ov of Polymer Science, Part B: Polymer Physics, 2004, 42, 374-385.	verlock 10° 2.1	Tf 50 427 T 70
352	In-situ microfibrillar PET/iPP blend via slit die extrusion, hot stretching, and quenching: Influence of hot stretch ratio on morphology, crystallization, and crystal structure of iPP at a fixed PET concentration. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 4095-4106.	2.1	64
353	Morphology and Tensile Strength Prediction of in situ Microfibrillar Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Ove Macromolecular Materials and Engineering, 2004, 289, 349-354.		f 50 347 <mark>Td</mark> 44
354	Essential Work of Fracture Parameters of in-situ Microfibrillar Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Engineering, 2004, 289, 426-433.	307 Td (te 3.6	erephthalate 35
355	Formation of in situ CB/PET Microfibers in CB/PET/PE Composites by Slit Die Extrusion and Hot Stretching. Macromolecular Materials and Engineering, 2004, 289, 568-575.	3.6	32
356	Morphology Dependent Double Yielding in Injection Molded Polycarbonate/Polyethylene Blend. Macromolecular Materials and Engineering, 2004, 289, 1004-1011.	3.6	31
357	Morphology and Rheological Behaviors of Polycarbonate/High Density Polyethylene in situ Microfibrillar Blends. Macromolecular Materials and Engineering, 2004, 289, 1087-1095.	3.6	42
358	Transcrystalline Morphology of an in situ Microfibrillar Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 147 Td Process. Macromolecular Rapid Communications, 2004, 25, 553-558.	l (terephth 3.9	alate)/Poly(121
359	Studies on polyamide-6/polyolefin blend system compatibilized with epoxidized natural rubber. Journal of Applied Polymer Science, 2003, 88, 398-403.	2.6	17
360	Stress-induced crystallization of biaxially oriented polypropylene. Journal of Applied Polymer Science, 2003, 89, 686-690.	2.6	13

ZHONG-MING LI

#	Article	IF	CITATIONS
361	Tensile properties of poly(ethylene terephthalate) and polyethylene in-situ microfiber reinforced composite formed via slit die extrusion and hot-stretching. Materials Letters, 2002, 56, 756-762.	2.6	73
362	Title is missing!. Journal of Materials Science Letters, 2002, 21, 1063-1067.	0.5	13