
Wei-Kan Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10541888/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Boron diffusion in silicon: the anomalies and control by point defect engineering. Materials Science and Engineering Reports, 2003, 42, 65-114.	31.8	67
2	Retardation of boron diffusion in silicon by defect engineering. Applied Physics Letters, 2001, 78, 2321-2323.	3.3	41
3	Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films. Thin Solid Films, 1999, 345, 240-243.	1.8	40
4	Precursor Oxidation State Control of Film Stoichiometry in the Metalâ^'Organic Chemical Vapor Deposition of Tin Oxide Thin Films. Chemistry of Materials, 1997, 9, 730-735.	6.7	30
5	Cluster-ion implantation: An approach to fabricate ultrashallow junctions in silicon. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 992.	1.6	22
6	High-energy recoil implantation of boron into silicon. Applied Physics Letters, 2000, 76, 3953-3955.	3.3	20
7	Enhancement of boron solid solubility in Si by point-defect engineering. Applied Physics Letters, 2004, 84, 3325-3327.	3.3	19
8	Athermal annealing at room temperature and enhanced activation of low- energy boron implants with high-energy Si coimplantation. Journal of Applied Physics, 2002, 92, 4307-4311.	2.5	16
9	Homoleptic Tin and Silicon Amido Compounds as Precursors for Low-Temperature Atmospheric Pressure Chemical Vapor Deposition of Tin and Silicon Oxide Thin Films. Chemistry of Materials, 1994, 6, 360-361.	6.7	12
10	Reduction of boride enhanced diffusion in MeV-implanted silicon. Journal of Applied Physics, 2002, 92, 5793-5797.	2.5	12
11	Point Defect Engineering and Its Application in Shallow Junction Formation. Electrochemical and Solid-State Letters, 2002, 5, G93.	2.2	11
12	Stability studies of ultrashallow junction formed by low energy boron implant and spike annealing. Journal of Applied Physics, 2002, 92, 5788-5792.	2.5	8
13	Using point-defect engineering to increase stability of highly doped ultrashallow junctions formed by molecular-beam-epitaxy growth. Applied Physics Letters, 2003, 83, 2823-2825.	3.3	7
14	Reduction of boride-enhanced diffusion by point defect engineering and its application for shallow junction formation. Nuclear Instruments & Methods in Physics Research B, 2003, 206, 413-416.	1.4	5
15	Ultra-shallow Junction Formation via GeB- ion Implantation of Si. Materials Research Society Symposia Proceedings, 2000, 610, 451.	0.1	4
16	Stability of Ultrashallow Junction Formed by Low-Energy Boron Implant and Spike Annealing. Electrochemical and Solid-State Letters, 2003, 6, G82.	2.2	4
17	Using point defect engineering to reduce the effects of energy nonmonochromaticity of B ion beams on shallow junction formation. Journal of Applied Physics, 2004, 96, 919-921.	2.5	4
18	GaN nanorod assemblies on self-implanted (111) Si substrates. Microelectronic Engineering, 2006, 83, 1714-1717.	2.4	4

Wei-Kan Chu

#	Article	IF	CITATIONS
19	Effect of substrate temperature on the radiation damage from MeV Si implantation in Si. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 434-436.	1.4	3
20	High thermal stability of vacancy clusters formed in MeV Si-self-ion-implanted Si. Applied Physics Letters, 2008, 93, 041908.	3.3	2
21	Application of High Energy Ion Beam on the Control of Boron Diffusion. Materials Research Society Symposia Proceedings, 2003, 792, 464.	0.1	Ο
22	Application of high energy ion beam for the control of boron diffusion. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 670-672.	1.4	0
23	The energy dependence of excessive vacancies created by high energy Si+ ion implantation in Si. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 506-508.	1.4	Ο
24	Diffusion of antimony in silicon in the presence of point defects. Nuclear Instruments & Methods in Physics Research B, 2007, 261, 1146-1149.	1.4	0