Annick Bricaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10541670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological production in two contrasted regions of the Mediterranean Sea during the oligotrophic period: an estimate based on the diel cycle of optical properties measured by BioGeoChemical-Argo profiling floats. Biogeosciences, 2022, 19, 1165-1194.	3.3	4
2	A three-step semi analytical algorithm (3SAA) for estimating inherent optical properties over oceanic, coastal, and inland waters from remote sensing reflectance. Remote Sensing of Environment, 2021, 263, 112537.	11.0	18
3	A global compilation of in situ aquatic high spectral resolution inherent and apparent optical property data for remote sensing applications. Earth System Science Data, 2020, 12, 1123-1139.	9.9	12
4	Assessing the Variability in the Relationship Between the Particulate Backscattering Coefficient and the Chlorophyll <i>a</i> Concentration From a Global Biogeochemicalâ€Argo Database. Journal of Geophysical Research: Oceans, 2018, 123, 1229-1250.	2.6	55
5	Light Absorption by Suspended Particles in the Red Sea: Effect of Phytoplankton Community Size Structure and Pigment Composition. Journal of Geophysical Research: Oceans, 2018, 123, 902-921.	2.6	19
6	Bioâ€optical anomalies in the world's oceans: An investigation on the diffuse attenuation coefficients for downward irradiance derived from <scp>B</scp> iogeochemical <scp>A</scp> rgo float measurements. Journal of Geophysical Research: Oceans, 2017, 122, 3543-3564.	2.6	44
7	Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnology and Oceanography: Methods, 2017, 15, 572-585.	2.0	191
8	On the discrimination of multiple phytoplankton groups from light absorption spectra of assemblages with mixed taxonomic composition and variable light conditions. Applied Optics, 2017, 56, 3952.	2.1	19
9	Determination of the absorption coefficient of chromophoric dissolved organic matter from underway spectrophotometry. Optics Express, 2017, 25, A1079.	3.4	15
10	A Consumer's Guide to Satellite Remote Sensing of Multiple Phytoplankton Groups in the Global Ocean. Frontiers in Marine Science, 2017, 4, .	2.5	115
11	Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future Development. Frontiers in Marine Science, 2017, 4, .	2.5	133
12	Synergistic Exploitation of Hyper- and Multi-Spectral Precursor Sentinel Measurements to Determine Phytoplankton Functional Types (SynSenPFT). Frontiers in Marine Science, 2017, 4, .	2.5	28
13	Retrieval of Colored Detrital Matter (CDM) light absorption coefficients in the Mediterranean Sea using field and satellite ocean color radiometry: Evaluation of bio-optical inversion models. Remote Sensing of Environment, 2016, 186, 297-310.	11.0	14
14	Hyperspectral absorption coefficient of "pure―seawater in the range of 350–550  nm inverted fr remote sensing reflectance. Applied Optics, 2015, 54, 546.	om 1.8	98
15	Inversion of spectral absorption coefficients to infer phytoplankton size classes, chlorophyll concentration, and detrital matter. Applied Optics, 2015, 54, 5805.	2.1	28
16	Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site). Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 91, 72-85.	1.4	66
17	Decomposition of in situ particulate absorption spectra. Methods in Oceanography, 2013, 7, 110-124.	1.6	82
18	Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site). Applied Optics, 2013, 52, 2257.	1.8	59

ANNICK BRICAUD

#	Article	IF	CITATIONS
19	Simulation of Future Geostationary Ocean Color Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 173-182.	4.9	6
20	Seasonal variability in the light absorption properties of western Arctic waters: Parameterization of the individual components of absorption for ocean color applications. Journal of Geophysical Research, 2011, 116, .	3.3	127
21	Distribution of normalized waterâ€leaving radiances at UV and visible wave bands in relation with chlorophyll <i>a</i> and colored detrital matter content in the southeast Pacific. Journal of Geophysical Research, 2010, 115, .	3.3	26
22	Light absorption properties and absorption budget of Southeast Pacific waters. Journal of Geophysical Research, 2010, 115, .	3.3	130
23	Optical properties of the "clearest―natural waters. Limnology and Oceanography, 2007, 52, 217-229.	3.1	328
24	Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. Applied Optics, 2007, 46, 1251.	2.1	60
25	Statistical analysis of a database of absorption spectra of phytoplankton and pigment concentrations using self-organizing maps. Applied Optics, 2006, 45, 8102.	2.1	12
26	Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. Journal of Geophysical Research, 2004, 109, .	3.3	429
27	Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research, 2003, 108, .	3.3	758
28	Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community. Applied Optics, 2001, 40, 2929.	2.1	316
29	Variations of light absorption by suspended particles with chlorophyllaconcentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. Journal of Geophysical Research, 1998, 103, 31033-31044.	3.3	555
30	Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific. Journal of Geophysical Research, 1997, 102, 12413-12423.	3.3	88
31	Spectral absorption and fluorescence excitation properties of phytoplanktonic populations at a mesotrophic and an oligotrophic site in the tropical North Atlantic (EUMELI program). Deep-Sea Research Part I: Oceanographic Research Papers, 1996, 43, 1215-1240.	1.4	33
32	Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep-Sea Research Part I: Oceanographic Research Papers, 1996, 43, 1241-1272.	1.4	226
33	Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. Journal of Geophysical Research, 1995, 100, 13321.	3.3	902
34	Light backscattering efficiency and related properties of some phytoplankters. Deep-sea Research Part A, Oceanographic Research Papers, 1992, 39, 1835-1855.	1.5	192
35	Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling areaand the Sargasso Sea. Limnology and Oceanography, 1990, 35, 562-582.	3.1	425
36	Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation. Journal of Plankton Research, 1988, 10, 851-873.	1.8	194

ANNICK BRICAUD

#	Article	IF	CITATIONS
37	Modeling the light attenuation and scattering by spherical phytoplanktonic cells: a retrieval of the bulk refractive index. Applied Optics, 1988, 27, 3954.	2.1	57
38	Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling. Applied Optics, 1986, 25, 571.	2.1	231
39	Optical efficiency factors of some phytoplankters1. Limnology and Oceanography, 1983, 28, 816-832.	3.1	290
40	Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-sea Research Part A, Oceanographic Research Papers, 1981, 28, 1375-1393.	1.5	661
41	Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains1. Limnology and Oceanography, 1981, 26, 43-53.	3.1	1,258