Jan Ter Meulen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10540227/publications.pdf

Version: 2024-02-01

47 papers

4,548 citations

147801 31 h-index 223800 46 g-index

47 all docs

47 docs citations

47 times ranked

6502 citing authors

#	Article	IF	CITATIONS
1	Intratumoral expression of IL-12 from lentiviral or RNA vectors acts synergistically with TLR4 agonist (GLA) to generate anti-tumor immunological memory. PLoS ONE, 2021, 16, e0259301.	2.5	2
2	A Phase 1b Study Evaluating the Safety, Tolerability, and Immunogenicity of CMB305, a Lentiviral-Based Prime-Boost Vaccine Regimen, in Patients with Locally Advanced, Relapsed, or Metastatic Cancer Expressing NY-ESO-1. Oncolmmunology, 2020, 9, 1847846.	4.6	22
3	Intratumoral immune activation with TLR4 agonist synergizes with effector T cells to eradicate established murine tumors. Npj Vaccines, 2020, 5, 50.	6.0	19
4	Therapeutic efficacy of PD1/PDL1 blockade in B16 melanoma is greatly enhanced by immunization with dendritic cell-targeting lentiviral vector and protein vaccine. Vaccine, 2020, 38, 3369-3377.	3.8	11
5	Intratumoral G100, a TLR4 Agonist, Induces Antitumor Immune Responses and Tumor Regression in Patients with Merkel Cell Carcinoma. Clinical Cancer Research, 2019, 25, 1185-1195.	7.0	97
6	Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a Phase 2 clinical trial. Npj Vaccines, 2018, 3, 3.	6.0	57
7	First-in-Human Treatment With a Dendritic Cell-targeting Lentiviral Vector-expressing NY-ESO-1, LV305, Induces Deep, Durable Response in Refractory Metastatic Synovial Sarcoma Patient. Journal of Immunotherapy, 2017, 40, 302-306.	2.4	51
8	LV305, a dendritic cell-targeting integration-deficient ZVex TM -based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response. Molecular Therapy - Oncolytics, 2016, 3, 16010.	4.4	29
9	Winning a Race Against Evolving Pathogens with Novel Platforms and Universal Vaccines. , 2015, , 251-287.		2
10	Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection. PLoS Pathogens, 2015, 11, e1005276.	4.7	138
11	Virological and Preclinical Characterization of a Dendritic Cell Targeting, Integration-deficient Lentiviral Vector for Cancer Immunotherapy. Journal of Immunotherapy, 2015, 38, 41-53.	2.4	24
12	Intratumoral Injection of TLR4 Agonist (G100) Leads to Tumor Regression of A20 Lymphoma and Induces Abscopal Responses. Blood, 2015, 126, 820-820.	1.4	8
13	In vitro and in vivo characterization of designed immunogens derived from the CD-helix of the stem of influenza hemagglutinin. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1759-1775.	2.6	10
14	Design of Escherichia coli-Expressed Stalk Domain Immunogens of H1N1 Hemagglutinin That Protect Mice from Lethal Challenge. Journal of Virology, 2012, 86, 13434-13444.	3.4	69
15	Sangassou Virus, the First Hantavirus Isolate from Africa, Displays Genetic and Functional Properties Distinct from Those of Other Murinae-Associated Hantaviruses. Journal of Virology, 2012, 86, 3819-3827.	3.4	44
16	The Impact of Human Conflict on the Genetics of Mastomys natalensis and Lassa Virus in West Africa. PLoS ONE, 2012, 7, e37068.	2.5	39
17	Monoclonal Antibodies in Infectious Diseases: Clinical Pipeline in 2011. Infectious Disease Clinics of North America, 2011, 25, 789-802.	5.1	29
18	Current Molecular Epidemiology of Lassa Virus in Nigeria. Journal of Clinical Microbiology, 2011, 49, 1157-1161.	3.9	68

#	Article	IF	CITATIONS
19	Novel Arenavirus Sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from CÃ te d'Ivoire: Implications for Evolution of Arenaviruses in Africa. PLoS ONE, 2011, 6, e20893.	2.5	72
20	Pushing the envelope on HIV-1 neutralization. Nature Biotechnology, 2010, 28, 929-931.	17.5	5
21	Serological Evidence of Human Hantavirus Infections in Guinea, West Africa. Journal of Infectious Diseases, 2010, 201, 1031-1034.	4.0	57
22	Design of an HA2-based <i>Escherichia coli</i> expressed influenza immunogen that protects mice from pathogenic challenge. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13701-13706.	7.1	201
23	Characterization of Lassa Virus Cell Entry and Neutralization with Lassa Virus Pseudoparticles. Journal of Virology, 2009, 83, 3228-3237.	3.4	51
24	Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective against H5N1 and H1N1 Recovered from Human IgM+ Memory B Cells. PLoS ONE, 2008, 3, e3942.	2.5	676
25	Reproductive Characteristics of <i>Mastomys natalensis </i> and Lassa Virus Prevalence in Guinea, West Africa. Vector-Borne and Zoonotic Diseases, 2008, 8, 41-48.	1.5	53
26	Monoclonal antibodies for prophylaxis and therapy of infectious diseases. Expert Opinion on Emerging Drugs, 2007, 12, 525-540.	2.4	26
27	Amino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH-dependent membrane fusion and infectivity. Journal of General Virology, 2007, 88, 2320-2328.	2.9	55
28	Fluctuation of Abundance and Lassa Virus Prevalence in <i>Mastomys natalensis</i> in Guinea, West Africa. Vector-Borne and Zoonotic Diseases, 2007, 7, 119-128.	1.5	109
29	Mapping and analysis of West Nile virus-specific monoclonal antibodies: prospects for vaccine development. Expert Review of Vaccines, 2007, 6, 183-191.	4.4	16
30	The potential of targeted antibody prophylaxis in SARS outbreak control: A mathematic analysis. Travel Medicine and Infectious Disease, 2007, 5, 70-78.	3.0	2
31	Novel Hantavirus Sequences in Shrew, Guinea. Emerging Infectious Diseases, 2007, 13, 520-522.	4.3	140
32	RT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2007, 101, 1253-1264.	1.8	107
33	<i>Mastomys natalensi</i> s and Lassa Fever, West Africa. Emerging Infectious Diseases, 2006, 12, 1971-1974.	4.3	175
34	Hantavirus in African Wood Mouse, Guinea. Emerging Infectious Diseases, 2006, 12, 838-840.	4.3	266
35	Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants. PLoS Medicine, 2006, 3, e237.	8.4	594
36	Isolation and Characterization of Human Monoclonal Antibodies from Individuals Infected with West Nile Virus. Journal of Virology, 2006, 80, 6982-6992.	3.4	153

#	Article	IF	CITATION
37	Antibody responses against wild-type yellow fever virus and the 17D vaccine strain: characterization with human monoclonal antibody fragments and neutralization escape variants. Virology, 2005, 337, 262-272.	2.4	49
38	Molecular and Biological Characterization of Human Monoclonal Antibodies Binding to the Spike and Nucleocapsid Proteins of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2005, 79, 1635-1644.	3.4	152
39	First International Quality Assurance Study on the Rapid Detection of Viral Agents of Bioterrorism. Journal of Clinical Microbiology, 2004, 42, 1753-1755.	3.9	47
40	Old and New World arenaviruses share a highly conserved epitope in the fusion domain of the glycoprotein 2, which is recognized by Lassa virus-specific human CD4+ T-cell clones. Virology, 2004, 321, 134-143.	2.4	60
41	Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). Virus Research, 2004, 100, 249-255.	2.2	90
42	Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet, The, 2004, 363, 2139-2141.	13.7	252
43	Lassa Virus Z Protein Is a Matrix Protein Sufficient for the Release of Virus-Like Particles. Journal of Virology, 2003, 77, 10700-10705.	3.4	211
44	Antibodies to Lassa virus Z protein and nucleoprotein co-occur in human sera from Lassa fever endemic regions. Medical Microbiology and Immunology, 2001, 189, 225-229.	4.8	17
45	Short communication: Lassa fever in Sierra Leone: UN peacekeepers are at risk. Tropical Medicine and International Health, 2001, 6, 83-84.	2.3	32
46	Characterization of Human CD4 + T-Cell Clones Recognizing Conserved and Variable Epitopes of the Lassa Virus Nucleoprotein. Journal of Virology, 2000, 74, 2186-2192.	3.4	98
47	Identification of a Novel Consensus Sequence at the Cleavage Site of the Lassa Virus Glycoprotein. Journal of Virology, 2000, 74, 11418-11421.	3.4	63