Yi-Chung Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10538649/publications.pdf

Version: 2024-02-01

34 papers 1,116 citations

430874 18 h-index 395702 33 g-index

34 all docs

34 docs citations

34 times ranked 2274 citing authors

#	Article	IF	Citations
1	Wafer Scale Phaseâ€Engineered 1T―and 2Hâ€MoSe ₂ /Mo Core–Shell 3Dâ€Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 9831-9838.	21.0	208
2	Single CuO _{<i>x</i>} Nanowire Memristor: Forming-Free Resistive Switching Behavior. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16537-16544.	8.0	124
3	A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS $<$ sub $>$ 2 $<$ /sub $>$ 1 \pm -MoO $<$ sub $>$ 3 $<$ /sub $>$ hybrid heterostructured nanoflowers. Journal of Materials Chemistry A, 2018, 6, 15320-15329.	10.3	86
4	Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions. Journal of Materials Chemistry A, 2017, 5, 13320-13328.	10.3	77
5	Three-Dimensional Molybdenum Diselenide Helical Nanorod Arrays for High-Performance Aluminum-Ion Batteries. ACS Nano, 2020, 14, 8539-8550.	14.6	57
6	Design of Lamellar Mo ₂ C Nanosheets Assembled by Mo ₂ C Nanoparticles as an Anode Material toward Excellent Sodium-Ion Capacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 18375-18383.	6.7	51
7	Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: a review. RSC Advances, 2016, 6, 60643-60656.	3.6	47
8	Artificial Synapse Based on a 2D-SnO ₂ Memtransistor with Dynamically Tunable Analog Switching for Neuromorphic Computing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52822-52832.	8.0	47
9	High-Performance Rechargeable Aluminum–Selenium Battery with a New Deep Eutectic Solvent Electrolyte: Thiourea-AlCl∢sub>3∢/sub>. ACS Applied Materials & Interfaces, 2020, 12, 27064-27073.	8.0	46
10	An indoor light-activated 3D cone-shaped MoS ₂ bilayer-based NO gas sensor with PPb-level detection at room-temperature. Nanoscale, 2019, 11, 10410-10419.	5.6	42
11	Low Temperature Growth of Graphene on Glass by Carbon-Enclosed Chemical Vapor Deposition Process and Its Application as Transparent Electrode. Chemistry of Materials, 2015, 27, 1646-1655.	6.7	41
12	Environmentally and Mechanically Stable Selenium 1D/2D Hybrid Structures for Broad-Range Photoresponse from Ultraviolet to Infrared Wavelengths. ACS Applied Materials & Enp.; Interfaces, 2018, 10, 35477-35486.	8.0	39
13	Highly sensitive, selective and stable NO ₂ gas sensors with a ppb-level detection limit on 2D-platinum diselenide films. Journal of Materials Chemistry C, 2020, 8, 4851-4858.	5.5	33
14	Non-antireflective Scheme for Efficiency Enhancement of Cu(In,Ga)Se ₂ Nanotip Array Solar Cells. ACS Nano, 2013, 7, 7318-7329.	14.6	28
15	Thermoplasmonics-assisted nanoheterostructured Au-decorated CuInS2 nanoparticles: Matching solar spectrum absorption and its application on selective distillation of non-polar solvent systems by thermal solar energy. Nano Energy, 2015, 15, 470-478.	16.0	22
16	Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition. Scientific Reports, 2016, 6, 19102.	3.3	21
17	Recovery of Valuable Materials from the Waste Crystalline-Silicon Photovoltaic Cell and Ribbon. Processes, 2021, 9, 712.	2.8	20
18	Rearâ€Passivated Ultrathin Cu(In,Ga)Se ₂ Films by Al ₂ O ₃ Nanostructures Using Glancing Angle Deposition Toward Photovoltaic Devices with Enhanced Efficiency. Advanced Functional Materials, 2019, 29, 1905040.	14.9	19

#	Article	IF	CITATIONS
19	Large-Scale Micro- and Nanopatterns of Cu(In,Ga)Se ₂ Thin Film Solar Cells by Mold-Assisted Chemical-Etching Process. ACS Nano, 2015, 9, 3907-3916.	14.6	14
20	Electrochemically active novel amorphous carbon (a-C)/Cu3P peapod nanowires by low-temperature chemical vapor phosphorization reaction as high efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2019, 318, 374-383.	5.2	13
21	Design of novel TiO ₂ –SiO ₂ core–shell helical nanostructured anti-reflective coatings on Cu(In,Ga)Se ₂ solar cells with enhanced power conversion efficiency. Journal of Materials Chemistry A, 2019, 7, 11452-11459.	10.3	13
22	Enhanced solar performance of chemical bath deposited-Zn(O,S)/Cu(In,Ga)Se ₂ solar cells via interface engineering by a wet soaking process. Journal of Materials Chemistry A, 2015, 3, 14985-14990.	10.3	11
23	Design of suppressing optical and recombination losses in ultrathin CulnGaSe2 solar cells by Voronoi nanocavity arrays. Nano Energy, 2020, 78, 105225.	16.0	10
24	Vertical Al2Se3/MoSe2 heterojunction on sapphire synthesized using ion beam. RSC Advances, 2017, 7, 10154-10157.	3.6	9
25	Fabrication of large-scale single-crystal Cu(In,Ga)Se2 nanotip arrays solar cell by one-step ion milling processes. Thin Solid Films, 2013, 546, 347-352.	1.8	8
26	Large Scale and Orientation-Controllable Nanotip Structures on CulnS ₂ , Cu(ln,Ga)S ₂ , CulnSe ₂ , and Cu(ln,Ga)Se ₂ by Low Energy Ion Beam Bombardment Process: Growth and Characterization. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8327-8336.	8.0	6
27	Enhanced Power Conversion Efficiency in Solutionâ€Processed Rigid CuIn(S,Se) 2 and Flexible Cu(In,Ga)Se 2 Solar Cells Utilizing Plasmonic Auâ€5iO 2 Coreâ€5hell Nanoparticles. Solar Rrl, 2019, 3, 1800343.	5.8	5
28	Fabrication of vertically aligned CulnSe2 nanorod arrays by template-assisted mechanical approach. Materials Chemistry and Physics, 2013, 138, 5-10.	4.0	4
29	Geometric Design of Confined Conducting Filaments in Resistive Random Access Memory by Al ₂ O ₃ Nanodome-Shaped Arrays (NDSAs) via Glancing-Angle Deposition Technology Toward Neuromorphic Computing., 2021, 3, 1757-1766.		4
30	Electrocatalysis: Wafer Scale Phase-Engineered 1T- and 2H-MoSe2 /Mo Core-Shell 3D-Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction (Adv. Mater. 44/2016). Advanced Materials, 2016, 28, 9658-9658.	21.0	3
31	Enhanced Conversion Efficiency of Cu(In,Ga)Se ₂ Solar Cells via Electrochemical Passivation Treatment. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7777-7782.	8.0	3
32	Self-organized antireflection Culn(S,Se)2 nano-protrusions on flexible substrates by ion erosion based on CulnS2 nanocrystal precursor inks. Applied Surface Science, 2015, 354, 36-41.	6.1	2
33	In Situ Current-Accelerated Phase Cycling with Metallic and Semiconducting Switching in Copper Nanobelts at Room Temperature. ACS Nano, 2021, 15, 4789-4801.	14.6	2
34	Multifunctional Ion‧ensitive Floating Gate Fin Fieldâ€Effect Transistor with Threeâ€Ðimensional Nanoseaweed Structure by Glancing Angle Deposition Technology. Small, 2022, 18, e2104168.	10.0	1